

aurecon

New Zealand Parliament – Ministerial and New Members Developments Detailed Site Investigation, Rev1 Parliamentary Services 6 August 2021 Revision: 1 Reference: 248221

Bringing ideas to life

Document control record

Document prepared by:

Aurecon New Zealand Limited

Spark Central Level 8, 42-52 Willis Street Wellington 6011 PO Box 1591 Wellington 6140 New Zealand

- **T** +64 4 472 9589
- **F** +64 4 472 9922
- E wellington@aurecongroup.com
- W aurecongroup.com

A person using Aurecon documents or data accepts the risk of:

- a) Using the documents or data in electronic form without requesting and checking them for accuracy against the original hard copy version.
- b) Using the documents or data for any purpose not agreed to in writing by Aurecon.

Docι	Document control åurecon								
Repo	rt title	Detailed Site Investigation, Rev1							
Document ID		248221_Detailed Site Investigation_Rev1	Project	Project number		248221			
File p	oath								
Clien	t	Parliamentary Services							
Client contact		Jim Robb	Client re	Client reference		248221_Detailed Site Investigation_Rev1			
Rev	Date	Revision details/status	Author	Reviewer	Verifier (if required)	Approver			
0	17 November 2017	Revision 0	N King C.Env	S Howell	T Dee	M Welby			
1 06 August 2021		Updates to address resource activity type, naming convention and general in the following sections: Executive Summary 1.1 1.2 9.1 10.2 11	S McAuley	W Whitley CEnvP	R Larkin	M Welby			
Curre	ent revision	1							

Approval							
Author signature	- Shiluly	Approver signature	Mor Willy				
Name	Shauna McAuley	Name	M Welby				
Title	Consultant (Contaminated Land)	Title	Project Director				

aurecon

Contents

1	Intro	duction	4
	1.1	Project Background	4
	1.2	Proposed Developments	4
	1.3	Legislative Requirements	5
	1.4	Objectives and Scope	5
2	Site \$	Setting	6
	2.1	Site Setting	6
	2.2	Site General Description	6
	2.3	Geological and Hydrogeological Setting	6
3	Site I	listory and Record Search Review	8
	3.1	Greater Wellington Regional Council Selected Land Use Register – HAIL Sites	8
	3.2	Greater Wellington Regional Council Database – Consents and Bores	8
	3.3	Wellington City Council Property Files	8
	3.4	Historical Land Survey Information and Historical Aerial Photography	8
	3.5	Previous Investigation and Reporting	9
4	Sum	mary of Potential Contaminating Sources	10
5	Conc	eptual Site Model	11
	5.1	Ground Model	11
	5.2	Contamination linkage assessment	11
6	Intru	sive Investigation	13
	6.1	Investigation Objectives	13
	6.2	Investigation Approach	13
	6.3	Sampling Methodology	14
	6.4	Ground Conditions and Results of Field Testing	17
7	Scre	ening Assessment	23
	7.1	Assessment Criteria	23
	7.2	Soil	23
	7.3	Groundwater	24
8	Risk	Assessment	26
	8.1	Investigation Summary	26
9	Deve	lopment Implications	28
	9.1	Resource Consents	28
	9.2	Occupational Health and Safety	29
10	Conc	lusions and Recommendations	30
	10.1	Conclusions	30
	10.2	Recommendations	31
11	Limit	ations	32

Appendices

Appendix A

Figures

Appendix B

Bore Hole and Test Pit Logs

Appendix C

Percolation Tests

Appendix D

Field Monitoring Sheets

Appendix E

Screening Tables

Appendix F

Laboratory Certificates and Chain of Custody Documentation

Page 2

Executive Summary

Parliamentary Services ('the client') engaged Aurecon NZ Ltd ('Aurecon') to prepare a Detailed Site Investigation (DSI) to support a Resource Consent application for the development of two new structures within the New Zealand Parliamentary Complex Wellington ('the site'). The two developments are described as follows:

- The 'New Ministerial Annex' (in current 2021 nomenclature referred to as Ministerial Building); and
- The 'New Members Building' (in current 2021 nomenclature referred to as Museum Street Building).

The site (which occupies approximately 5 hectares) has been in use as the seat of the New Zealand Government since approximately the 1860s. Aurecon understands that the client intends to develop new facilities to supplement building infrastructure on the site, which will be located in two separate areas on the western side of the Complex.

Aurecon issued a Preliminary Site Investigation (PSI) in support of the proposed developments in 2017, which identified three Hazardous Activities and Industries List (HAIL) activities to have occurred on the site.

An intrusive investigation was undertaken to assess the potential risk associated with HAIL activities, which targeted the footprints of the proposed developments. Investigation stages included drilling boreholes and subsequent piezometer installation, excavation of test pits, chemical analysis of soil and groundwater samples. The investigations found the following:

- No exceedances of Tier 1 soil criteria with respect to human health criteria for commercial / industrial site use were reported during intrusive investigation works (MfE, 1999 - Revised 2011).
- Shallow soil samples generally exceeded background concentrations for the greater Wellington region, indicating the potential presence of uncontrolled fill material across the site.
- Asbestos fibres were not identified in any soil samples collected.
- Copper concentrations are above Tier 1 criteria within perched groundwater with respect to potential natural receiving environments (ANZECC 2000).
- Laboratory results at BH1-2 reported elevated E. Coli and ammonia concentrations, which can be indicative of the presence of wastewater. Please see Appendix A for intrusive investigation locations.
- The conceptual site model has identified potentially complete source-pathway-receptor linkages between:
 - Construction workers and uncontrolled fill mateiral; and
 - On- and off-site users and uncontrolled wastewater discharge.
- Shallow soil present across the site is likley fill material and should be managed appropriately for if disposed on- or off-site.

Based on the findings of this DSI, the following actions are recommended:

- Application for a controlled activity Resource Consent prior to development of the site is likely to be required to comply with NES-Soil regulations and completion of a Contaminated Site Management Plan.
- Application for a discretionary activity (restricted) consent is likely to be required to comply with Rule 32.2.1 of the Wellington City Council District Plan (WCCDP)
- Any work involving the disturbance of shallow soil should be undertaken in accordance with method statements and risk assessment prepared in accordance with relevant guidance including the Health and Safety Act (2016).

1 Introduction

1.1 Project Background

Parliamentary Services ('the client') engaged Aurecon NZ Ltd ('Aurecon') to prepare a Detailed Site Investigation (DSI) to support a Resource Consent application for the development of two new structures within the New Zealand Parliamentary Complex in Wellington (hereafter 'the site'). The two structures are described as follows:

- The 'New Ministerial Annex' (in current 2021 nomenclature referred to as Ministerial Building); and
- The 'New Members Building' (in current 2021 nomenclature referred to as Museum Street Building).

A site location plan showing the site and the locations of the proposed developments is presented in **Appendix A**.

1.2 Proposed Developments

1.2.1 New Ministerial Annex

The proposed 'New Ministerial Annex' is to form an extension to the western side of the Executive Wing. The western side of the Executive Wing currently comprises a structure that is in use as the 'Press Gallery' and also incorporates two service access entranceways into the building.

This Press Gallery structure is to be fully demolished and replaced as part of the development. A small raised, walled ornamental garden is also located to the immediate west of the Executive Wing, which will also be removed (the new development does not cover the whole area of the garden, but it will likely be fully removed during construction) to make way for the New Ministerial Annex structure.

The development will be rectangular in covering an area of 972 m² and will incorporate multiple levels and a basement structure below some or all of the footprint of the new development. Figure 1 shows the layout of the Parliamentary Complex, and the approximate locations of the structures within the site:

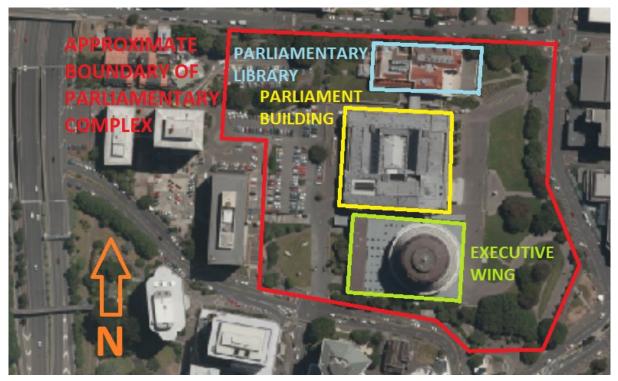


Figure 1: Site boundary, and location of features within the Parliamentary Complex (image courtesy of WCC Webmap, wellington.govt.nz/webmap/wccmap.html)

1.2.2 New Members Building

The proposed 'New Members Building' is to be constructed on land currently used for car parking to the west of the Parliament House Building. This building is to be a multi-storey rectangular-plan covering an area of 2000 m², with abasement structure below some or all of the footprint of the new development.

1.3 Legislative Requirements

The site is recorded on the Greater Wellington Regional Council Selected Land Use Register (GWRC SLUR) as a Hazardous Activities and Industries List (HAIL) site (refer to **Section 3**), defined under the Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations (2011) (the 'NES'). Therefore, the proposed development will require a resource consent under the NES to undertake proposed development works.

In addition to the NES, potential contamination associated with historical uses may also present a risk to the health of construction workers (not currently legislated by the NES) and nearby environmental receptors; legislated in accordance with the Proposed Natural Resources Plan for the Wellington Region, the Health and Safety at Work Act 2015 and its various associated Regulations. A DSI is required to assess the potential risk to human health and environmental receptors as a result of historical and current site activities.

1.4 Objectives and Scope

This contamination assessment was undertaken to assess the risk from ground to human health and the built environment as a result of proposed development works, and consisted of soil and groundwater sampling to assess contamination conditions.

At the time of the investigation design and writing of this report the developments were still at conceptual design stage so many details of the buildings have not been finalised, but available architectural information indicates that the proposed developments will incorporate single-level basement structures.

This assessment comprises a review of existing reports (refer to **Section 3**) with incorporation of updated background information and supplementary soil and groundwater sampling to confirm conditions. The following scope of works was undertaken:

- Desktop review of current sub-surface conditions and historical site use;
- Soil profile logging and sampling via mechanically-drilled boreholes and mechanically-advanced / hand-excavated shallow test pits across the footprints of the proposed developments;
- Use of a photoionisation detector (PID) to screen for the presence of volatile compounds in soil;
- Installation of piezometers in the boreholes;
- Undertake ground gas monitoring and groundwater sampling;
- Analysis of soil and groundwater samples at an accredited laboratory for identified contaminants of concern; and
- Review and assessment of analytical results.

This DSI has been conducted in accordance with Ministry for the Environment (MfE) *Contaminated Land Management Guidelines*, within the framework of the *Resource Management Act 1991*. This assessment has been undertaken and verified by Suitably Qualified and Experienced Practitioners (SQEPs) as required under the NES.

Page 5

2 Site Setting

2.1 Site Setting

The site, which covers a total area of approximately 5 hectares, is located in Pipitea, at the northern end of the Wellington Central Business District (CBD), and is bounded by Bowen Street to the south, Lambton Quay to the southeast, Molesworth Street to the east, Hill Street to the north, and Museum Street and the 'Bowen Campus' complex of high-rise buildings to the west.

2.2 Site General Description

The site is the seat of the New Zealand Government (comprising the Parliament and Executive), and contains three main buildings, which occupy the central, central–northern and central–southern parts of the site, along with car parks, and landscaped garden areas.

As shown in Figure 1A, the Executive Wing is the southernmost building (Bowen Street is located to the immediate south and Museum Street to the immediate west), Parliament House is in the central part of the site immediately north of the Executive Wing, and the Parliamentary Library is the northernmost (immediately south of Hill Street), and is connected to Parliament House by a short covered walkway.

All of the large buildings are built on level platforms, but the site slopes down gently towards the south, with the northern area (containing car parks and access roads) being noticeably elevated above the rest of the site (the base of the Parliamentary Library at the northern end of site is situated at a higher elevation than the Parliament Building and Executive Wings. The southern boundary (adjoining Bowen Street and Lambton Quay) contains a short steeper slope, and the ground to the west of the Parliamentary Library immediately adjacent to Hill Street at the northern boundary also slopes steeply up to the site boundary.

2.3 Geological and Hydrogeological Setting

2.3.1 Regional and Local Geology

The geology of the Central Wellington area has been mapped and described in the 1:50,000 scale Geological Map of New Zealand – Sheet 22 – Wellington Area Map (Begg and Mazengarb, 1996). This map indicates that the soil underlying the site is *"Alluvium, silty, peat, loess, including Haywards and Kaitoke gravels, and subsurface Moera Gravel; sand; minor tephra, principally Rangitawa Tephra on erosion surface (ln)"*.

The GNS Science report 'It's Our Fault' (Semmens et al, 2010) provides a 1:12,500 scale map of the Wellington CBD, which shows that the site underlain by 'Old Alluvium / Colluvium: Pleistocene alluvial and colluvial deposits consisting of sands, silts, weathered gravels and clays. Poorly sorted to well sorted, medium dense to very dense / effective bedrock'. Greywacke and argillite bedrock is inferred to lie beneath the alluvium soils at a depth of approximately 50 to 90 metres below ground level (m bgl).

The map also shows a former ('fossil') stream passing through the site from east to west (approximately midway on the north-south axis on the western side, and flowing on a curve towards the southeast on the eastern side of site), at a depth of between 4 m and 5 m bgl. which means that this fossil stream flowed approximately under Parliament House and the proposed New Members Building development area. The route of this fossil stream underlays '*Reclamation Fill: Locally quarried, end dumped, weathered greywacke sandstone, mudstone and spoil, domestic waste (bricks, glass, wood, etc), sand, boulders and engineered fill, poorly compacted to compact', which indicates that the stream course was infilled to provide a level surface for construction, and that the stream may still flow as a subsurface feature on the same (or similar course / alignment).*

A report compiled by Nick Perrin (1986) discussed the likely presence of other fossil stream channels across the site. Any such fossil stream channels could potentially be significant for the site as a preferential flow path for shallow groundwater, and therefore for liquid phase or dissolved contaminants as well.

The geology beneath the site was described by Aurecon in 2017 as:

New Ministerial Annex

- The site is underlain by fill comprising silt and gravels at the top. The depth of fill is likely to vary between 1.5 m bgl and 4.5 m bgl. It was difficult to indicate the exact depth of fill due to compositional similarity between the fill and in-situ materials.
- The fill is underlain by undifferentiated alluvium and colluvium soils to bedrock. The soils to approximate 7 m bgl comprises alternating layers of silt, sand and gravels. The silts are logged as soft to stiff and sand and gravels as loose to medium dense.
- The soils below 7 m bgl are predominantly sandy / silty gravel with random interbedded layers of sand, silt and clay mixtures. The thickness of interbedding varies from 0.3 m bgl to up to 2 m bgl. The gravels are generally moderately dense to very dense.
- The above alluvium and colluvium soils are underlain by bedrock at 75 m bgl to 85 m bgl. The bedrock is logged as slightly weathered, highly fractured and strong greywacke siltstone with few thin quartz veins up to 100 mm thick; bluish grey to orange grey.

New Members Building

- The site is underlain by fill comprising silt and gravels at the top. The depth of fill is likely to vary between 1.5 m bgl and 3.8 m bgl. It was difficult to indicate the exact depth of fill due to compositional similarity between the fill and *in-situ* materials.
- The fill is underlain by undifferentiated alluvium and colluvium soils to bedrock. The soils to approximate 11.5 m bgl comprises alternating layers of silt, sand and gravels. The silts are logged as soft to stiff and sand and gravels as loose to medium dense.
- The soils below 7 m bgl are predominantly sandy/silty gravel with interbedded layers of sand, silt and clay mixtures. The thickness of interbedded soil varies from 0.3 m bgl to up to 2.1 m bgl. The gravels are generally moderately dense to very dense
- The above alluvium and colluvium soils are underlain by bedrock at 53 m to 66 m bgl. The bedrock is logged as slightly weathered, highly fractured and strong greywacke siltstone with few thin quartz veins up to 100 mm thick; bluish grey to orange grey.

2.3.2 Hydrological and Hydrogeological Setting

There are no permanent surface water bodies within the site boundary. The nearest surface water body is Wellington Harbour, the shoreline of which is located approximately 400 m southeast of the site. Before land reclamation was undertaken in approximately the late 1800s the harbour shoreline was located in close proximity to the site.

Prior to development of the site as the New Zealand Parliament Complex at least one small stream flowed approximately east-west across the site (these streams likely discharged to the historical shoreline of Wellington Harbour in close proximity to the east) but all surface water flowpaths were infilled, likely at the time of the site's development.

During the 2017 Aurecon geotechnical investigations, groundwater was noted during drilling at between 0.8 and 2.6 m bgl within the footprint of the proposed location of the New Ministerial Annex, and 2.4 and 2.9 m bgl within the footprint of the proposed location of the New Members Building. Based on observations from the construction works at the Bowen Campus to the immediate west of site, the groundwater was observed to occur as a perched groundwater unit within the top 5 m.

Regional groundwater flow is expected to the east towards Wellington Harbour though flow may vary on local scales due to heterogeneity in the fill material, and the presence of foundations and basement structures in the shallow subsurface. It should be noted that the groundwater levels are likely to be subject to seasonal and geographical variations.

Page 7

3 Site History and Record Search Review

This section provides a summary of the review of site history and record search review that was undertaken in the Aurecon PSI:

3.1 Greater Wellington Regional Council Selected Land Use Register – HAIL Sites

A search was undertaken of the GWRC online Selected Land Use Register (SLUR), and this identified that the site is recorded as having activities listed on the MfE HAIL. Details are as follows:

SN/05/907/02 (Parliament Buildings), verified history of hazardous activity or industry. HAIL category: A2 – Chemical manufacture, formulation or bulk storage. Sub-category: Storage tanks or drums for fuel, chemicals or liquid waste.

3.2 Greater Wellington Regional Council Database – Consents and Bores

A search of the GWRC Resource Consents and Wells database (which provides data on Water Take Consents, Resource Consents and Wells and Bores) was undertaken, no information of relevance to this assessment was identified.

3.3 Wellington City Council Property Files

Council property file information (supplied by the Wellington City Council (WCC) Archives) provides a record of former resource and building consents related to individual properties located within the site area. The records with greatest potential significance for ground contamination conditions are summarised as follows (other records are summarised in the PSI, but these are of lesser direct relevance to potential ground contamination conditions):

- Architectural drawings for the 'Departmental Building and Broadcasting House, Bowen Street Wellington' (1957). This record provided details of the Departmental Building and Broadcasting House, which were located to the west of the current Parliament Complex buildings. This record provides confirmation of the presence of asbestos containing material (ACM) within Broadcasting House.
- Project consent application (including plans) for refurbishment at 'Bowen Street, Broadcasting House, Levels 1-4' (1993 94). This record provides evidence that ACM removal works were undertaken in several locations within Broadcasting House.
- Application for building consent at 'Bowen Street, Broadcasting House, Wellington' (1997 98). This record provides detail of the plans for demolition of Broadcasting House, but no mention of any remaining ACM in the structure is given.
- Record for '1 Molesworth Street (40 Bowen Street)' (2010 11). This record describes the replacement diesel tanks installed within the Executive Wing building. These works (comprising 2 x 7000 litre tanks) took place at a location at the eastern end of the building, which is outside of the proposed development areas.

3.4 Historical Land Survey Information and Historical Aerial Photography

This section summarises the broad findings of the historical land title information (made available from Land Information New Zealand) and historical photography (both ground level and aerial, made available from Opus International Consultants, the National Library of New Zealand collection, the VC Browne aerial photography collection and Google Earth),

Page 8

The earliest survey record (1869) showed that the land on which the site was constructed was immediately adjacent to the shoreline with Wellington Harbour to the east. Development of the site commenced in the late 1800s and by the early 20th century the site (which was noted as being earmarked for government use) contained numerous buildings including the Parliamentary Library and roadways (which were closed off as use of the site expended).

By the 1930s large-scale land reclamation had extended the shoreline to the east of the site, and the 'Old and New Parliament Wings' ('New Parliament Wing' refers to the current Parliament House), as well as a series of smaller buildings labelled as 'Government Workshops' had been constructed on the site. The site and its immediate surrounds subsequently underwent significant development in the 1950s and 1960s with the construction of Broadcasting House and the New Zealand Electricity Department Building to the immediate west of the Parliament buildings.

The 'Old Parliament Wing' was demolished and the Executive Wing constructed on the same location during the 1970s. Few major changes were made on the site during the 1980s and 1990s, but the Workshops, Broadcasting House and New Zealand Electricity Department Buildings had all been demolished and fully cleared by the early 2000s, with the land use to the west of the Parliamentary Complex changed to large-scale car parking; that land use has continued to the present day.

3.5 Previous Investigation and Reporting

3.5.1 Aurecon 2017 PSI Report

The PSI carried out by Aurecon provides a summary of the site's environmental setting and historical uses and activities from the initial development of the site as the location of the national Parliamentary Complex in the late 1800s, through to the current day.

Potential sources of contamination identified by the PSI have been summarised in **Section 4**. HAIL activities identified at the site included the on-site storage of hydrocarbons (as recorded in the GWRC SLUR), the infilling of the ground from successive rounds of building construction and demolition, along with the potential importation of fill material, and the presence of asbestos in the ground due uncontrolled building demolition and presence of uncontrolled fill.

The preliminary contamination linkage assessment concluded that the on-site storage of hydrocarbons may have resulted in limited impacts to groundwater (including off-site migration), and the presence of fill material (potentially containing asbestos) could pose a risk to construction and maintenance works, future site users, and environmental / ecological receptors. The PSI recommended that this DSI be undertaken to inform the risks posed to these receptors as part of the proposed new developments.

3.5.2 Aurecon 2017 Geotechnical Reports

Geotechnical investigations were carried out by Aurecon which were reported separately for the two proposed development areas. The geotechnical investigation of this location was undertaken between 19 November 2016 and 24 February 2017. The findings of this investigation have been integrated into the ground model presented in this report.

3.5.3 Aurecon 2016 Bowen Campus Geotechnical Report

Geotechnical investigations were carried out by Aurecon at the Bowen Campus site, which is located to the immediate west of the site. The investigations were undertaken between 17 November and 21 December 2015, and investigation have been integrated into the ground model presented in this report

4 Summary of Potential Contaminating Sources

Based on the reviewed historical information and data provided by the SLUR, three HAIL activities have been identified to have occurred on the site.

• A2 – Chemical manufacture, formulation or bulk storage.

The SLUR identifies this HAIL category as being applicable to the site, and consent records confirm that several underground storage tanks (USTs) and above-ground storage tanks (ASTs) are present at the site.

No specific information was available on the size, age or condition of the tanks except those at the eastern end of the Executive Wing (which date from 2010 - 11) so it is inferred that the USTs at the western end of Parliament House and the Parliamentary Library are of older installation and are therefore the most likely historical and potentially ongoing source of hydrocarbon contamination. There is potential for diesel-range hydrocarbons to have entered soil directly surrounding the tank from leaks and other defects in the tank, pumps and piping systems, and also potentially from spills and leaks from filling of the tank, and extraction of product from the tanks.

E1 – Asbestos products manufacture or disposal including sites with buildings containing asbestos products known to be in a deteriorated condition.

The building consents records identify ACM was present in Broadcasting House (removal works are recorded as having taken place, but no record is made of the completeness of these works), and therefore may have been present in other nearby buildings which were demolished during the approximate period 1960s – 2000s.

Demolition of these buildings may potentially have led to may have led to ACM and asbestos fibres and dust becoming incorporated into shallow fill material from the demolition process itself, or from the disposal of ACM-bearing demolition waste directly to ground (see below).

G5 – Waste disposal to land (excluding where biosolids have been used as soil conditioners).

During the period from the late 19th century to the early 21st century significant land-use changes (construction and removal of buildings and roads) have been undertaken in the area to the west of the Parliamentary Complex. These land-use changes have been undertaken as several successive 'rounds' of development and as such site infilling may have taken place to some degree within the whole Parliamentary Complex. A number of the buildings that have been removed were large and so will have produced large quantities of demolition waste, all or some of which may have been retained on site.

Successive layers of fill material could potentially have been emplaced, and even if later works had removed significant quantities of fill, it is feasible that earlier fill material may have been left in place on top of natural deposits. It is also possible that uncontrolled fill from other unknown/unrecorded sites could have been brought in for levelling and surface build-up purposes during one or more of the historical construction phases.

Page 10

5 Conceptual Site Model

Risk is assessed on the basis of a Conceptual Site Model (CSM) considering source – pathway – receptor linkages. Central to the requirements for the assessment of risk is the development of a CSM based on the existing available information.

5.1 Ground Model

The stratigraphy of the site, compiled from published geological data and previous intrusive site works, is presented in Table 1.

Table 1: Stratigraphy

Geological unit Generalised lithology		Depth below ground level to top of unit (m bgl)	Thickness (m)
Fill	Sandy gravel, silt	0.0	1.5 – 2.2 (3.0 – 4.5 ¹)
Undifferentiated Colluvium / Alluvium	Silty clay, clayey silt, silt, sandy silt, silty sand, sand, silty gravel, gravelly sand, sandy gravel, gravel / cobbles	1.5 – 2.2 (3.0 – 4.5 ¹)	51.5 – 72.9
Bedrock	Weathered, fractured siltstone with quartz veins	53.7 – 75.1	Unknown

¹ The Aurecon 2017 geotechnical reports both note that "It was difficult to indicate the exact depth of fill due to compositional similarity between the fill and in-situ materials", so the thickness of fill is uncertain.

The groundwater surface was encountered during the investigation over the two proposed development areas between 0.8 and 2.9 m bgl, with groundwater interface generally closer to ground surface in the location of the New Ministerial Annex to the south, and deeper to the north at the proposed location of the New Members Building.

Several paleo channels are present within the vicinity of the site below the observed groundwater table, these may influence migration of contamination from the site.

5.2 Contamination linkage assessment

Table 2 presents the preliminary contamination linkage assessment identifying sources pathways and receptors. This assessment was undertaken with consideration of the requirements of the forthcoming redevelopment of the site. Receptors considered to potentially be at risk from the proposed development and subsequent site use are as follows:

- Future site users;
- Adjacent site users;
- Construction and maintenance workers;
- Surface water bodies (Wellington Harbour, and also the on-site stormwater system);
- Groundwater;
- Future site infrastructure (such as foundations, buried services and utilities);

In addition, the following will be key considerations for the redevelopment of the site:

- Appropriate on- or off-site management of excavated materials; and
- Appropriate management of water produced by dewatering of excavations.

The preliminary contamination linkage assessment has been developed from an assessment of potential sources of contaminants, potential exposure pathways, and feasible receptors.

Table 2: Preliminary Contamination Linkage Assessment

Site activity, likely affected areas and HAIL designation	Potential contaminants	Pathway	Critical Receptors	Comments
Handling, storage and use of bulk chemicals (hydrocarbons) within USTs / ASTs on the Parliamentary Complex. Known locations of are these are the eastern and western ends of Parliament House, and at the eastern end and sub-basement of the Executive Wing building. Approximate timeframe of activity: The start of bulk on-site hydrocarbon storage is unknown, but is likely to have been ongoing since approximately the 1920s (therefore approximately 90 years ago to present). HAIL category: A2	Hydrocarbons (likely to be mostly in the diesel and fuel oil range), heavy metals, soil vapours	Inhalation Ingestion Dermal Contact Leaching to groundwater and lateral migration from the site	Future site users Adjacent site users Construction and maintenance workers Groundwater Surface water Site Infrastructure	Bulk hydrocarbons are likely to be held on site primarily for the purposes of emergency generation (though no confirmation of any on-site electrical generators was identified in any of the records, though this could be due to confidentiality requirements) and also potentially for ancillary purposes such as vehicle refuelling or as a fuel for on-site space heating (if this is the case, it would likely be historical). USTs installed earlier than approximately the 1990s would be unlikely to be double walled or have any sort of bunding or leakage mitigation features, so are most likely to have caused direct contamination of immediately surrounding ground and / or groundwater.
Use of fill material (including waste from the demolition of on-site buildings and / or uncontrolled imported fill) to reclaim land and / or build up, landscape or otherwise alter the ground surface within the site. Asbestos in soil originating directly from dust and debris released during the uncontrolled demolition of on-site buildings, or contained with building demolition waste used for infill. Asbestos that was surplus to requirements during construction of on-site buildings could also potentially have buried on site, and / or could have been brought to site within uncontrolled imported fill. Approximate timeframe of activity: major land use changes on the site have been undertaken in three distinct 'waves' / phases (refer to Aurecon 2017 PSI), with the first taking place after World War II (therefore approximately 70 years ago to present). HAIL categories: E1 and G5	Various including heavy metals, asbestos, hydrocarbons	Inhalation Ingestion Dermal Contact Leaching to groundwater and lateral migration from the site	Future site users Adjacent site users Construction and maintenance workers Groundwater Surface water Site Infrastructure	The peak period of asbestos use (approximately 1960s to 1980s) broadly coincides with the second major 'phase' of land use change, which was when the Old Parliamentary Wing was demolished to make way for the Executive Wing during the 1970s. Fill emplaced during this period presents the greatest risk of containing asbestos.

6 Intrusive Investigation

6.1 Investigation Objectives

The objective of the intrusive investigation was to obtain site specific data to inform the contamination linkage assessment such that the following assessments can be refined:

- Risks to construction workers during earthworks (bulk excavation and foundation installation) and building construction;
- Risks to future site users;
- Groundwater quality and risk of off-site migration of contaminants;
- Requirements for dewatering during earthworks and options for management of effluent;
- Risks to environmental receptors; and
- Management and disposal options for bulk soil that is to be excavated from the site (including assessment of scope for reuse of excavated materials on-site).

6.2 Investigation Approach

6.2.1 Overall Approach

The intrusive investigation was undertaken through the use of machine-drilled boreholes and machine-/ hand-excavated shallow test pits, which targeted the footprints of the proposed developments. Intrusive investigation locations are presented in **Appendix A**.

The intrusive works were undertaken by Webster Drilling and RDL under the observation of Aurecon Engineers between 19 September and 13 October 2017. The breakdown of the investigation stages is as follows:

- Installation of BH1-1 and BH1-2 (within the location of the New Ministerial Annex) to a maximum total depth of 10 m bgl, with standpipe piezometers (screened between 0.5 and 4.5 m bgl), including soil logging and sampling;
- Installation of BH2-1 and BH2-2 (within the location of the New Members Building) to a total depth of 10 m bgl, with standpipe piezometers (screened between 0.5 and 4.5 m bgl), including soil logging and sampling;
- Mechanical excavation of TP1 8 (within the location of the New Ministerial Annex) to a maximum total depth of 0.6 m bgl, including soil logging and sampling;
- Hand excavation of TP9 10 (within the location of the New Members Building) to a total depth of 0.45 m bgl, including soil logging and sampling;
- Ground gas monitoring in BH1-1, BH1-2, BH 2-1 and BH2-2;
- Borehole piezometer development in BH1-1, BH1-2, BH 2-1 and BH2-2; using a submersible electric pump and hand bailers, including percolation / rising head tests in BH1-1 and BH2-1; and
- Groundwater monitoring and sampling using a low-flow electric pump and hand bailers in BH1-1, BH1-2, BH 2-1 and BH2-2;.

Refer to Appendix A for a layout of all of the test locations.

6.2.2 Reasoning for Approach

Borehole drilling allows detailed observation and logging of geological material to be undertaken in both shallow and deeper geological layers, and the piezometers installed in the boreholes permit ground gas and groundwater monitoring and sampling to be subsequently undertaken. The characterisation of shallow fill material within the proposed development areas was identified as a priority for the site investigation, for which test pitting is best suited as it allows observation of large

surface area faces of in-situ soil. As such, a combination of boreholes and test pits was used in this investigation.

The shallow test pits were intended to provide rapid, spatially-distributed 'snapshots' of the general nature of the fill over the footprints of the development areas, rather than to provide detailed logs of the full thickness of the material. Review of historical data indicated the potential for demolition waste and other anthropogenic materials to be present in fill, and the shallow test pits provided a means to assess the presence, composition and distribution of this material.

6.2.3 Intrusive Methodology

The client requested that disruption to the in-use staff car park (where the footprint of the proposed New Members Building is located, corresponding to TP1 - 8) was minimised, which required out-of-hours (night) working.

A contractor was engaged to excavate eight locations (TP1 – TP8) using a conventional 2-tonne excavator and reinstate the locations, within a single night whilst applying appropriate procedures and measures for asbestos control and avoiding service damage (close observation and toothless excavator buckets). The final two test pits (TP9 and TP10) were located within the footprint of the New Ministerial Annex in the walled garden area, so were not subject to the same timing restrictions as those located within the active car park area. These were hand-excavated at a later date, as the wall around the garden prevented access for the 2-tonne excavator, and ground conditions generally permitted hand-excavation.

All locations were scanned for underground services and obstructions prior to excavation by Underground Service Locators (using ground penetrating radar (GPR) and a cable avoidance tool (CAT)), based on available service plans.

Intrusive service clearance was carried out using shallow hand-augered boreholes at BH1-1 and BH1-2, where the lack of surface seal / hardstanding and ground conditions permitted this approach, but this was not possible in the car park area for BH2-1 and BH2-2. Excavation of a service clearance pit to approximately 2 m bgl using the 2-tonne excavator (applying appropriate safety procedures; see above) was undertaken, followed by backfill around an upright (approximately) 200 mm diameter PVC tube which was cut off at the ground surface to provide a 'guidance sleeve' for the drillers.

All four of the boreholes were advanced to their target depth of 10 m bgl using a rotary drilling rig driving PQ (approximately 120 mm diameter) casing, with full core recovery. Aurecon observed the first stage of borehole drilling (approximately the first three - four metres, depending on conditions observed) at each location (to log and sample core from shallow depth, which potentially contained volatile contaminants). Core from the remainder of the hole was logged and sampled by Aurecon at a later date.

6.3 Sampling Methodology

6.3.1 Soil Sampling

Samples were collected from multiple depths within the boreholes and test pits; this was steered by planned sampling frequency (i.e. sampling at regular and representative depth) and also based observations made during excavation/drilling and soil logging. Samples were targeted to areas where evidence (visual and olfactory indicators, and 'head space' readings) of contaminants was observed, at the groundwater surface, and where ground conditions and the underlying soil strata may have varied.

The 'head space' readings were taken by collecting soil samples from soil cores (as soon as practical following core recovery) and the walls and base of test pits, which were then placed into zip lock plastic bags and a PID was used to measure the presence of volatile compounds in the soil after approximately 10 minutes.

Samples were collected in general accordance with Contaminated Land Management Guidelines (CLMG) *Volume 5: Site Investigation and Analysis of Soils.* Between each location, the sampling

aurecon

equipment was cleaned with Decon90 (phosphate free detergent) and disposable nitrile gloves were used to collect each sample to minimise the risk of cross contamination. Soil samples were placed directly into clean containers provided by the laboratory, which were then placed in a chilled container and sent to the laboratory under chain of custody documentation for analysis.

A total of 61 soil samples (19 from the test pits, 42 from the boreholes) were collected during the investigation. A total of 28 of these samples were placed in cold storage at the analytical laboratory, and 33 samples (taken from both the boreholes and test pits) were scheduled for analysis. The following describes the analyses that were carried out, excluding duplicates which are further discussed in **Section 7.4**:

- 33 samples were analysed for heavy metals;
- 11 samples were analysed for Total Petroleum Hydrocarbons (TPH);
- 11 samples were analyses for Benzene, Toluene, Ethylbenzene and Xylenes (BTEX);
- 33 samples were analysed for Polycyclic Aromatic Hydrocarbons (PAH); and
- 33 samples were analysed for asbestos presence / absence (P/A).

6.3.2 Ground Gas and Soil Vapour Monitoring

Measurements for CH₄, CO₂, CO and H₂S ('ground gas') indicate the potential presence of putrescible organic matter (such that might be found in waste materials and fill) and microbial activity (related to breakdown of elevated levels of organic matter) in the soil and/or groundwater, and measurement for O₂ provides indication of modification of ambient atmospheric conditions. Measurements with the PID provides indication of the presence of volatile low molecular weight organic contaminants ('soil vapour') originating from soil and/or groundwater.

Ground gas and soil vapour monitoring of the boreholes was undertaken prior to the borehole development and groundwater monitoring / sampling due to equipment availability constraints. Valve-controlled gas taps were fitted to the top of each of the standpipe to create a gas-tight seal and these were then left in place for a minimum of 24 hours to allow gases to accumulate within the standpipe from surrounding soil and groundwater.

Using an adapter that fitted to the gas tap to produce a sealed and controlled gas flow, a landfill gas analyser (LFGA) was used to measure prevailing atmospheric pressure, relative pressure within the standpipe, methane, oxygen, carbon dioxide, carbon monoxide, hydrogen sulphide, and the gas flow rate at timed intervals over a period of 270 seconds.

Gas from the exhaust vent of the LFGA was directed into a specialised valve-controlled sampling bag, and the PID was used to measure the concentrations of volatiles in this gas two or three times (dependant on the rate that it filled) over the 270 second monitoring period. A final PID reading was taken directly from the gas tap following the completion of landfill gas monitoring. Refer to **Sections 6.4.3 and Section 6.4.4** for the results and discussion of the monitoring.

6.3.3 Borehole Development and Groundwater Sampling

Four boreholes were installed at the site to provide data on the following aspects of groundwater:

- Groundwater level and hydrogeological gradients / flow characteristics within, and between the two proposed development locations;
- Groundwater quality at spatially separate locations within, and between the two proposed development locations; and
- To provide an even spread that may give insights on contaminants distributions and flows that may not be evident from analysis of historical features and conditions.

Table 3 provides details of the borehole installation, including the standpipe piezometers:

Table 3: Borehole Piezometer Installation Details

Borehole	Relative Level of borehole headworks (ground surface, m RL)	Depth of borehole (m bgl / RL)	Top of Screen (m bgl / RL)	Length of Screen (m)	Strata Screened	Coordinates (NZTM)
BH1-1	11.2	10.0 / 1.2	0.5 / 10.7	4	Fill / Undifferentiated Colluvium - Alluvium	1748722.5 E 5428824.3 N
BH1-2	11.2	10.0 / 1.2	0.5 / 10.7	4	Fill / Undifferentiated Colluvium - Alluvium	1748723.1 E 5428806.3 N
BH2-1	12.4	10.0 / 2.4	0.5 / 11.9	4	Fill / Undifferentiated Colluvium - Alluvium	1748704.6 E 5428902.5 N
BH2-2	11.6	10.0 / 1.6	0.5 / 11.1	4	Fill / Undifferentiated Colluvium - Alluvium	1748700.3 E 5428871.8 N

The locations are shown on the investigation location plan in Appendix A.

All locations have been screened across material which the 2017 Aurecon geotechnical investigations identified as being "...*difficult to indicate the exact depth of fill due to compositional similarity between the fill and* in-situ *materials*", and as such may comprise fill, Undifferentiated Colluvium – Alluvium, or a reworked mixture of both of these materials.

The screened (slotted) section was sufficient to ensure samples could be recovered and because the material over the length of the screened section was generally of similar permeability. Due to these conditions we do not consider this investigation likely to have created additional pathways for the transport of contaminants to greater depth.

Groundwater sampling was undertaken between 9 and 13 October 2017. An interface probe was initially used to measure the depth to the water table, and to detect the potential presence of any free-phase hydrocarbon layers on the groundwater surface and within the water column. Development of BH2-1 and BH2-2 was started using an electrically-driven submersible pump, but the water column was rapidly drawn down to the base of the screened section in both boreholes.

The observation of rapid water column draw-down followed by slow recharge and high silt concentrations gave cause to undertake percolation / rising head tests to gain an understanding of general hydrogeological characteristics. These tests were carried out in one borehole in each of the proposed development areas (BH1-1 in the New Ministerial Annex location, and BH2-1 in the New Members Building location).

The recharge rates observed in both of these boreholes indicate that groundwater gradients and / or transmissivity of the surrounding material to be low, as the recharge rates were slow (on the order of 0.25 m hr⁻¹ in BH1-1 and 1 m hr⁻¹ in BH2-1). The graphs from the test are provided in **Appendix C**.

Sampling of all of the boreholes was due to be undertaken by extracting groundwater from the central part of the water column using low-flow equipment. A YSI Professional Plus Water Quality Meter was to be used to measure temperature, dissolved oxygen, electrical conductivity, oxidation/reduction potential and pH at five-minute intervals for a 30 minute period prior to sampling.

This was successfully completed at BH2-1, but in BH2-2 significant air pockets started to appear in the water flow after 25 minutes of monitoring of groundwater conditions (with the water quality meter). Measurement of groundwater level indicated that the water column had dropped significantly (to the sampling level) so steady flow was re-established by lowering the sampling tube by approximately 0.1 - 0.2 m further into the standpipe, but the final water quality measurements were foregone so that water samples could be successfully taken.

In BH1-1 air pockets started to appear in the water flow after 20 minutes of groundwater condition monitoring, and after measuring the groundwater level and lowering the sampling tube, the flow

ceased completely. Groundwater level measurement indicated that water was still present in the standpipe but the low-flow pump was unable to draw any fluid to the surface, so a hand-bailer was then used to obtain 'grab samples' of groundwater from the lower part of the standpipe.

Measurement of groundwater level in BH1-2 indicated that there was unlikely to be sufficient water to undertake low-flow sampling in line with procedure (based on the experiences with the other boreholes), so a hand-bailer was used to immediately obtain 'grab samples' of groundwater without any low-flow pumping being attempted. The strong odour noted during well development was present during sampling. Silt was noted to persist in significant quantities at the base of BH1-1 and BH1-2.

Sample containers were supplied by an IANZ-accredited laboratory and groundwater was pumped / poured (in the case of the 'grab samples') directly into these containers, and care was taken during this process to not overfill the containers so that the preservatives were not spilled from the containers. The containers were placed directly into a chilled container and sent to the laboratory under chain of custody documentation. The following describes the analyses that were carried out:

- 4 samples were analysed for dissolved heavy metals;
- 4 samples were analysed for TPH;
- 4 samples were analysed for BTEX;
- 4 samples were analysed for PAH;
- 1 sample (from BH1-2 only; see above) was analysed for aggregated nutrients (nitrate, nitrite, ammonia and dissolved reactive phosphorus) and the presence / absence of total / faecal coliforms.

The specialist analyses were scheduled for water samples from BH1-2 due to the strong 'organic' odours (associated with the water and silt) noted during the development and sampling of BH1-2. It is possible that the olfactory signature could be associated with concentrations of organic matter in the ground, sources of which could potentially include organic matter emplaced with fill, or wastewater leaking from nearby underground services.

6.4 Ground Conditions and Results of Field Testing

6.4.1 Soil

In the proposed location of the New Ministerial Annex, all of the intrusive investigations were undertaken within the walled garden area, so there was no surface seal or hardstanding requiring removal, but surficial turf was removed in 'slabs' for ease of reinstatement. The proposed location of the New Members Building is in active use as a staff car park (including access roadways) so is sealed with asphalt with a thickness of approximately 0.2 m (including underlying gravelly basecourse). In a single location (TP8) the surface was sealed with interlocking bricks with a thickness of approximately 0.15 m (including underlying sandy basecourse).

In all locations with surface hardstanding, a circular saw was used to cut an approximately squareprofile penetration into this asphalt (approximately 1×1 m for the test pits, and approximately 2×2 m for the borehole service clearance pits), which was subsequently lifted by the 2-tonne excavator to give access to underlying soil.

Table 4 is the ground model developed from logging of the borehole cores, and in the shallow test pits across both proposed development areas during this investigation.

Table 4: Investigation stratigraphy

Geological unit	Generalised lithology	Depth below ground level to top of unit (m bgl)	Thickness (m)
Surface Seal (proposed New Members Building area only)	Asphalt with silty or sandy gravel basecourse. Interlocking bricks with gravelly sand basecourse. All surface hardstanding was in good condition with no notable breaks or penetrations.	0.0	0.15 – 0.2
Topsoil (proposed New Ministerial Annex area only)	Clayey silt, silt, sandy silt		
Fill	Clayey silt, silty sand, gravelly silt, gravel, cobbles	0.15 – 0.2	1.05 – 1.35
Alluvium (and colluvium)	Clayey silt, silty sand, gravelly sand, silty gravel,	1.05 – 1.35	Base of unit not encountered

Table 5 provides detail on locations and depths where anthropogenic materials or other clear evidence of contamination was noted along with corresponding PID readings obtained from head space tests in the boreholes. Borehole logs providing more detail of the soils encountered are included in **Appendix B**.

Borehole / Test Pit ID	Observations of note (PID readings are max steady value in parts per million (ppm))
TP1	Fine brick fragments observed between 0.2 and 0.6 m bgl PID readings: 0.1 m bgl – 0.8, 0.4 m bgl – 0.8
TP2	Weathered timber observed between 0.2 and 0.55 m bgl PID readings taken at 0.15 and 0.45 m bgl – no response recorded
ТР3	No anthropogenic materials observed PID readings: 0.2 m bgl – 0.2, 0.4 m bgl – 0.1
TP4	No anthropogenic materials observed PID readings: 0.15 m bgl – 0.2, 0.35 m bgl – 0.1
TP5	Frequent brick fragments and whole bricks observed between 0.17 and 0.6 m bgl (highest concentration below 0.4 m bgl) PID readings: 0.15 m bgl – 0.3, 0.5 m bgl – 0.3
TP6	Frequent fine brick fragments and infrequent whole bricks observed between 0.3 and 0.55 m bgl PID readings: 0.25 m bgl – 0.2, 0.5 m bgl – no response recorded
TP7	No anthropogenic materials observed PID readings: 0.15 m bgl – 0.1, 0.45 m bgl – 0.3
TP8	Frequent brick fragments observed between 0.15 and 0.5 m bgl PID readings: 0.2 m bgl $-$ 0.1, 0.45 m bgl $-$ 0.1
TP9	No anthropogenic materials observed PID readings: 0.1 and 0.3 m bgl – no response recorded
TP10	No anthropogenic materials observed PID reading: 0.2 m bgl – 0.2

Borehole / Test Pit ID	Observations of note (PID readings are max steady value in parts per million (ppm))					
BH1-1	Wood fragments observed between 0.0 and 0.2 m bgl and at 8.2 m bgl, and rootlets observed between 0.0 and 8.0 m bgl					
	11 PID readings taken from whole borehole profile; highest reading – 1.4					
BH1-2	Wood fragments observed between 0.0 and 0.2 m bgl and rootlets observed between 0.0 and 0.9 m bgl					
	12 PID readings taken from whole borehole profile; highest reading – 1.7					
BH2-1	Rootlets observed between 3.0 and 3.8 m bgl					
	8 PID readings taken from whole borehole profile; highest reading – 1.0					
BH2-1 (service	No fill – alluvium / colluvium boundary observed in pit					
clearance excavation)	Frequent anthropogenic materials including bricks and brick fragments, concrete fragments (including a large horizontal concrete 'shelf' at approximately 0.4 m bgl) and metallic items (including a section of crumpled, narrow aluminium or steel I-beam) observed in excavation wall.					
BH2-2	Rootlets observed between 7.25 and 7.7 m bgl					
	9 PID readings taken from whole borehole profile; highest reading – 2.0					
BH2-2 (service clearance excavation)	Sharp interval between grey-brown gravelly material (containing anthropogenic materials) and yellow brown silty material (without anthropogenic material) observed at 1.05 m bgl - potential fill – alluvium / colluvium boundary.					
	Frequent anthropogenic materials including bricks / brick fragments and concrete fragments observed in excavation wall (above 1.05 m bgl).					

6.4.1.1 Summary of Fill – Alluvium / Colluvium Boundary Observations

During the Aurecon 2017 geotechnical investigations it was noted that a clear boundary between fill material and underlying undifferentiated colluvium / alluvium could not be readily identified in either of the development areas, so a precise depth of fill could not be determined.

In this investigation the test pits were specified as shallow and so did not reach a depth where the base of fill would be expected, and for two of the boreholes (BH2-1 and BH2-2) service clearance excavations were completed to approximately 2 m bgl before drilling commenced so core was not returned from shallow depth from these locations.

Core was returned from surface level in BH1-1 and BH1-2 which allowed observation of the fill – alluvium / colluvium boundary, which was supplemented by observations in the BH2-2 service clearance excavation. Based on this information an approximate range for the boundary has been formulated, but uncertainty remains in defining the boundary due to the limited data available.

6.4.2 Groundwater

A summary of the groundwater levels and observations during sampling are summarised in Table 6.

Table 6: Summary of Ground Levels and Field Observations

Bore- hole	Relative Level of borehole headworks (m RL)	Groundwater surface (m bgl / m RL) [Date]	Groundwater surface (m bgl / m RL) [Date]	Groundwater surface (m bgl / m RL) [Date]	Observations (during dipping and well development)
					Submersible electric pump not used for well development due to accessibility constraints; groundwater removed by hand-bailing. The water column was rapidly fully drawn down to the base of the screened section during initial development.
BH1-1	11.2	3.27 / 7.93 [10/10/17]	3.96 / 7.24 [11/10/17]	3.05 / 8.15 [12/10/17]	Very high silt levels persisted even after purging and (at least partial) recharge cycles had occurred twice. In order to remove silt and other detritus to allow effective groundwater sampling to be undertaken, approximately 10 – 15 litres of clean (tap) water was poured into the borehole to break up the silt 'plug' at the base of the standpipe up into the water column, after which purging to dry conditions was immediately undertaken.
					This cycle was repeated twice in each location, after which each borehole was left in an undisturbed condition (i.e. to recharge with groundwater) for a minimum of 24 hours before sampling was undertaken.
BH1-2	11.2	3.52 / 7.68 [10/10/17]	2.91 / 8.29 [11/10/17]	4.09 / 7.11 [12/10/17]	BH1-2, Only: During development a distinct and strong 'organic' / 'ammonia-like' odour was noted coming from the standpipe, and water and silt that was brought to the surface. This did not diminish to any significant degree during the cycles of purging from the well, so the PID was used to take measurement at top of the standpipe, over recovered water, and the hand-bailer itself; no elevated readings were noted.
				2.77 / 9.63	Submersible electric pump used for initial well development. The water column was rapidly fully drawn down to the base of the screened section during initial development.
BH2-1	12.4	2.74 / 9.66 [9/10/17]	2.79 / 9.61 [10/10/17]	9.63 [12/10/17]	Very high silt levels persisted even after purging and (at least partial) recharge cycles had occurred twice. In order to remove silt and other detritus to allow effective groundwater sampling to be undertaken, approximately 10 – 15 litres of clean (tap) water was poured into the borehole
		2.78 / 8.82	2.78 / 8.82	2.85 / 8.75	to break up the silt 'plug' at the base of the standpipe up into the water column, after which purging to dry conditions was immediately undertaken.
BH2-2	11.6	[9/10/17]	[10/10/17]	[12/10/17]	This cycle was repeated twice in each location, after which each borehole was left in an undisturbed condition (i.e. to recharge with groundwater) for a minimum of 24 hours before sampling was undertaken.

The 2017 Aurecon geotechnical reports for the two proposed development areas state that the groundwater detected is likely to comprise perched water tables associated with layers of higher permeability lithologies (sands and gravels) within the alluvium / colluvium.

Table 7 compares the measured groundwater levels (refer to Table 6) against the borehole logs (refer to **Appendix B**) to assess whether groundwater is likely to comprise perched lenses, rather than being part of a dominant surficial aquifer.

Borehole Number	Highest measured groundwater surface (m bgl)	Lowest measured groundwater surface (m bgl)	Lithology in measured range	Underlying lithology
BH1-1	3.05	3.96	Gravel, sand, silty sand	Silt
BH1-2	2.91	4.09	Silty clay, silty sand, sandy gravel	Sand and silty sand
BH2-1	2.74	2.79	Silt	Silt and sand
BH2-2	2.78	2.85	Sandy silt, sand	Sandy silt, sand

Table 7: Measured Groundwater Ranges and Associated Lithologies

The spatial relationship between the measured groundwater levels and the lithologies identified in the borehole cores indicates surficial groundwater in the vicinity of the site is likely to occur in discrete, perched water tables. The slow recharge rates, as shown by the percolation / rising head tests; generally support this, as limited lateral extent and poor connectivity between perched water tables would limit total capacity and therefore recharge rate.

The two proposed development areas are separated by approximately 50 m at their closest points so the groundwater bodies identified in the two clusters of boreholes in the two development areas are unlikely to be hydraulically connected.

The significant variation in groundwater level in the vicinity of the proposed new ministerial annex indicates an intermittent perched table which may be influenced by building services. This is supported by the odour observed in BH1-2.

6.4.3 Ground Gas and Soil Vapour

Ground gas was measured in all four of the boreholes on 9 October 2017. A summary of the findings is presented in Table 8:

Bore- hole Number	Average PID reading from sample bag (ppm)	PID reading direct from gas tap (ppm)	Maximum PID Reading (ppm)	Steady CH₄ (% v/v)	Steady CO ₂ (% v/v)	Steady O₂ (% v/v)	Steady CO (ppm)	Steady H₂S (ppm)	Peak Flow (litres/ hour)	Average Flow (litres/hour)
BH1-1	0.26	0.1	0.27	0.0	0.7	20.1	1	0	0.3	0.3
BH1-2	0.28	0.2	0.3	0.0	0.4	20.5	2	0	0.2	0.15
BH2-1	0.41	0.24	0.5	0.0	0.0	20.8	2	0	0.2	0.2
BH2-2	0.76	0.48	1.2	0.0	0.1	20.8	1	0	0.3	0.25

Table 8: Summary of Ground Gas Measurements

No visual or olfactory indicators of gases or vapours were noted, and the relative pressure and flow rate figures (refer to **Appendix D** for the field sheets completed during monitoring) did not indicate that a significant build-up of gases had occurred in the standpipes prior to monitoring.

aurecon

The readings at locations BH1-1 and BH1-2 were notable because CO_2 was noted above ambient atmospheric concentrations (approximately 0.04 %v/v), and O_2 levels were very slightly decreased relative to ambient atmospheric concentrations (approximately 21% v/v). CO levels were also elevated in both locations (BH1-2 especially), but H₂S and CH₄ were not recorded in any locations.

The PID readings identified the presence of volatiles / soil vapours in all of the locations, with the highest average and peak readings recorded in BH2-1 and BH2-2. Concentrations > 10ppm are considered to be indicative of the presence of more than trace levels of volatiles in soil surrounding the monitoring well and this level was not detected in any of the boreholes.

Flow rates were fairly uniform across the four locations, and below the limit of quantification for the instrument. The prevailing atmospheric conditions at the time of measurement were very slightly below average, but are unlikely to have had a significant influence on flow rates.

The measured levels of ground gas and soil vapour parameters were low at all locations.

Based on the low concentrations of ground gas detected, highly permeable ground conditions, absence of detectable flow and absence of any significant source of ground gas we consider the risk posed by ground gas to be low.

7 Screening Assessment

The analytical results are summarised in the following sections for soil and groundwater. The laboratory transcripts are attached in **Appendix F**.

7.1 Assessment Criteria

Assessment criteria were selected for the site to enable a consideration of potential risk to human health, environmental receptors, and waste disposal. Criteria were selected based on advice from GWRC (2015) *Proposed Natural Resources Plan for the Wellington Region* and MfE (2011) *Contaminated Land Management Guidelines No. 2, Hierarchy and Application in New Zealand of Environmental Guideline Values.* The reported concentrations for each contaminant were compared with relevant guideline values selected from the following legislature / publications:

- Australian and New Zealand Environment and Conservation Council (ANZECC) (2000), Guidelines for Fresh and Marine Water Quality. (Under the Rule 55 of the Proposed Natural Resources Plan for the Wellington Region, the 95% protection of species is required to be considered).
- MfE, (2011), Method for Deriving Standard for Contaminants in Soil to Protect Human Health.
- MfE, 1999 (Revised 2011), Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand, Module 4 – Tier 1 soil acceptance criteria.
- MfE, 1999 (Revised 2011), Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand, Module 5 – Tier 1 groundwater acceptance criteria.
- Ministry of Health (MoH) Drinking-water Standards for New Zealand 2005 (revised 2008) (Under the Rule 55 of the Proposed Natural Resources Plan for the Wellington Region the potable water for 90% of species¹ is required to be considered).

In addition to the above guidance, soil results have been compared with criteria presented in URS, (2003), *Determination of Common Pollutant Background Soil Concentrations for the Wellington Region* as an added line of evidence to estimate the interface between fill material and natural soils.

Where required for application of these guidelines, this Tier 1 assessment has considered all samples as *sandy* soil. This is generally reflective of the lithologies encountered in the test pits and boreholes (shallow sandy and gravelly soils in the New Members Building area and clayey and sandy silts in the New Ministerial Annex area, and predominantly sandy, gravelly, and sandy silt alluvial / colluvial soils at greater depth in both areas) but is nonetheless considered to be a conservative assessment given that soil with a silt component are widespread through the depth profile to 10 m bgl, and were also observed in significant quantities during piezometer development.

7.2 Soil

Soil samples from both the fill material and underlying natural deposits were submitted for laboratory analysis. The results are described in the following subsections.

7.2.1 Heavy Metals

A total of 33 soil samples were analysed for 10 heavy metals (arsenic, beryllium, boron, cadmium, chromium, copper, lead, mercury, nickel and zinc). The results were compared to Tier 1 commercial/industrial human health screening criteria, and the Wellington Regional Background concentrations for sandy soil. No applicable tier 1 human health assessment criteria were exceeded.

¹ The MoH 2008 document does not present criteria as protecting percentages of species. Therefore, maximum acceptable values have been used for this criteria required by GWRC.

The results are summarised as follows:

- None of the samples contained heavy metal concentrations in excess of applicable Tier 1 human health criteria for commercial / industrial site use.
- All of the samples submitted (with the exception of BH2-1 at 3.3 m bgl) contained at least one metal at a concentration in excess of the maximum published background concentration value for sandy soils in the Wellington Region.
- The majority of results for chromium (32 of 33), copper (23 of 33) and nickel (29 of 33) were reported in excess of background concentration
- All of these exceedances were identified within shallow fill material.

7.2.2 Total Petroleum Hydrocarbons

A total of 11 samples were analysed for TPH. The results that were reported above the limit of reporting (LoR) were compared to Tier 1 human health screening criteria, the Wellington Regional Background concentrations for sandy soil.

The results are summarised as follows:

- None of the sample results reported TPH concentrations in excess of applicable Tier 1 human health criteria for commercial / industrial site use.
- Two samples collected in fill material reported results above LoR (TP6 at 0.25 m bgl and TP10 at 0.2 m bgl) for TPH C₁₅-C₂₆.
- Both results above LoR were below the maximum published background concentration value for sandy soils in the Wellington Region.

7.2.3 Benzene, Toluene, Ethylbenzene and Xylenes

A total of 11 samples were analysed for BTEX. All results were reported below LoR, and LoR were below respective Tier 1 human health criteria.

7.2.4 Polycyclic Aromatic Hydrocarbons

A total of 33 samples were analysed for PAH. The results were compared to Tier 1 human health screening criteria, the Wellington Regional Background concentrations for sandy soil and landfill criteria. The results are summarised as follows:

- None of the sample results reported PAH concentrations in excess of applicable Tier 1 human health criteria for commercial / industrial site use.
- Samples collected from test pits reported various PAH concentrations above the LoR (except TP4 at 0.15 m bgl, which reported all PAH below LoR), and above Wellington background concentrations at some locations.
- No samples collected below 1.75 m bgl reported concentrations of PAH concentrations above the LoR.

7.2.5 Asbestos

A total of 33 samples were analysed for the presence / absence of asbestos. No ACM or asbestos dust / fibres was detected in any of these samples.

7.3 Groundwater

Groundwater samples collected from wells installed as part of the intrusive investigation works were submitted for laboratory analysis. GWRC *Proposed Natural Resources Plan for the Wellington Region* requires the concentration of contaminants in groundwater meet criteria set out in ANZECC 2000 *Guidelines for Fresh and Marine Water Quality* and MoH *Drinking-water Standards for New Zealand* 2005.

7.3.1 Heavy metals

A total of four water samples were submitted for soluble heavy metal analysis. The results are summarised as follows:

- Two results for copper (BH1-1, 0.0016 mg/l, and BH2-1, 0.0033 mg/l) were found to be in excess of the ANZECC marine trigger value for the protection of 95% protection of species (0.0013 mg/l).
- All of the other above LoR results were below ANZECC trigger levels for protection of marine species.

7.3.2 Total Petroleum Hydrocarbons, Benzene, Toluene, Ethylbenzene and Xylenes

All laboratory results reported concentrations of TPH and BTEX below the LoR.

7.3.3 Polycyclic Aromatic Hydrocarbons

A total of four water samples were submitted for PAH analysis. The results are summarised as follows:

- Various PAH were reported above LoR, but below Tier 1 acceptance criteria, at BH1-2, BH2-1 and BH2-2.
- BH1-1 analytical results reported concentrations of all PAH below the LoR.

7.3.4 Aggregated Nutrients

A single water sample, from BH1-2, was submitted for analysis for aggregated nutrients. The results are summarised as follows:

- The sample submitted for aggregated nutrient analysis was analysed for nitrate (nitrate-N i.e. nitrogen which is combined into the nitrate ion), nitrite (nitrite-N), ammonia (ammonia-N) and dissolved reactive phosphorus.
- The result for ammonia was reported above the ANZECC marine trigger value for the protection of 95% protection of species.
- Nitrate, ammonia and dissolved reactive phosphorus were reported below LoR.

7.3.5 Microbial Analysis (Total / Faecal Coliforms)

A single water sample, from BH1-2, was submitted for analysis for total / faecal *Escherichia coli* ('E. coli') Coliforms. The results are summarised as follows:

- The result for E. coli was reported above the DoH drinking water standards.
- Total Coliforms were reported at 1720 MPN / 100 ml.

8 Risk Assessment

A risk is present if a complete pathway is present between the source of contamination and the receptors. This risk assessment takes into account site-specific information including the contaminant level information obtained from the intrusive investigations and the groundwater monitoring. It also takes into account the specific development works for the site. The disposability of excavated soils and groundwater produced by dewatering is not explicitly included in the risk assessment.

8.1 Investigation Summary

The key findings of the investigations completed to date are as follows:

- A boundary between fill and alluvium / colluvium was observed in several locations and fill is estimated to be between approximately 1 and 1.4 m thick in the proposed development areas, but uncertainty remains.
- The groundwater surface was measured during the Aurecon investigation as varying between approximately 2.8 and 4.1 m bgl over the two development areas.
- Groundwater appears to comprise perched water tables associated with higher permeability sandy and gravelly layers within the alluvium / colluvium, rather than there being a substantial aquifer (the 2017 Aurecon geotechnical investigations did not identify an aquifer at depth).
- Groundwater levels were notably different in the two borehole clusters in the two development areas, and responded differently in terms of draw-down and recharge (in the percolation / rising head tests), so are likely to be associated with sandy / gravelly lenses that are not (directly) linked.
- No Tier 1 human health criteria were exceeded
- The heavy metal and hydrocarbon results indicate a higher spatial prevalence of background exceedances in the shallow fill material, primarily in the New Members Building area. Regional background concentrations of multiple analytes were exceeded.
- The groundwater was found to contain concentrations of copper slightly elevated above ANZECC criteria.

The odour noted in BH1-2 during borehole development and sampling, combined with the significantly elevated ammonia and total Coliform levels are indicative of wastewater (sewage) in the groundwater, which implies a localised (i.e. none of these indicators were noted in BH1-1 at a distance of approximately 15 m) source of contamination. This is mostly likely due to a leaking wastewater pipeline at the approximate depth of the perched groundwater table.

The Conceptual Site Model is presented in Table 12. Note that HAIL category E1 (which was listed as a potential source of contamination in the CSM is not included in the risk assessment, as no asbestos was identified in any of the soil samples taken from the test pits or boreholes at any depth in any part of the site, so risks from this contaminant have been discounted.

Table 9: Conceptual site model

Source	Contaminants	Receptor	Pathway	Potential Effects	Likelihood of Source-Receptor Linkage	Risk Considerations
Use of fill material (including waste from the demolition of on- site buildings and / or uncontrolled imported fill) to reclaim land and / or build up, landscape or otherwise alter the ground surface within the site.	Heavy metals, hydrocarbons	Groundwater	Permeation through soil profile	Groundwater Contamination	Unlikely	 Heavy metals concentrations elevated above regional background were found to be widespread, but concentrations were generally not elevated to a very significant degree; lead above Class A landfill WAC was detected in only two isolated locations. Copper was identified above ANZECC 95% protection of marine species concentration, which implied that leaching of this metal from the fill to groundwater has occurred. The application of this criteria is however conservative as there is no direct pathway to the marine environmental, and concentrations of copper and other metals were below all other Tier 1 screening criteria. Measures as set out in the CSMP will require implementation to control minor risks to construction and maintenance workers, site users and off-site users from the low levels of contamination detected in the fill material.
Leakage of wastewater into groundwater at the southern end of the New Ministerial Annex area	Ammonia, heavy metals and Coliforms (including E. coli)	Construction and maintenance workers	Ingestion, Toxic, inhalation, hazardous to dermal contact human health		Possible	 The excavation of basement voids means that impacted soil and groundwater (which is likely to be intersected by the excavation) will be exposed. Measures as set out in the CSMP will require implementation to control the risks to construction and maintenance workers, site users and off-site users from exposure to ammonia and pathogens.
		Groundwater	Permeation through soil profile	Groundwater Contamination	Possible	The presence of impacted water at a distance (at BH1-2) from the wastewater route implies some degree of lateral spread of impacted groundwater but vertical migration is potentially less likely to have occurred due to the interbedded nature of the alluvium / colluvium, i.e. cohesive layers will limit percolation between the granular layers.

9 Development Implications

As a result of contamination being identified on the site, there are implications for the proposed development works in relation to resource consents, appropriate offsite disposal facilities and worker health and safety requirements.

9.1 **Resource Consents**

9.1.1 National Environmental Standard

The NES is applicable to any HAIL sites with proposed development works that includes soil disturbance or sampling, removal of fuel storage systems, subdivision or change in land use.

Based on the proposed soil disturbance and disposal volumes, risk assessment and the anticipated duration of works, the requirements for land disturbance to be a permitted activity under Regulation 8(3) of the NES cannot be met. No contaminants were encountered on site at a concentration that exceeded human health guidelines. A CSMP should be prepared (as a separate document) to address potential impacts on human health and environment resulting from the ground disturbance activities.

9.1.2 Wellington City Council District Plan – Contaminated Land

The Wellington City Council District Plan (WCCDP) contains requirements relating to the management of contaminated land in addition to those required under the NES within Section 32. Of particular relevance is Rule 32.2.1 which states:

• '32.2.1 Except as provided for in the Airport Precinct Rules, the remediation, use, development and subdivision of any contaminated land, or potentially contaminated land (unless it has been confirmed as not being contaminated through investigations in a report forwarded in accordance with Rule 32.1.3.1), is a discretionary activity (restricted) in respect of:'

The rule then details the technical matters governing assessment of contaminated land in New Zealand. Application for consent under this rule is also likely to be required for the site.

9.1.3 Proposed Natural Resources Plan for the Wellington Region

The Proposed Natural Resources Plan for the Wellington Region (PNRP, appeals version 2019) contains four rules (in Section 5.2.5, 'Contaminated Land and Hazardous Substances') that are of direct relevance to the redevelopment of the site. The first rule (R54) relates to this DSI. The second rule (R55) requires the site to comply with ANZECC criteria (95%) which the site does have concentrations above 95% ANZECC criteria with two exceedances for copper. The third rule R56 is as follows:

R56: Discharges from contaminated land – discretionary activity

'The use of the land, and discharge of contaminants onto or into land from contaminated land where the discharge may enter water that is not permitted by Rule R54 or Rule R55 is a discretionary activity.'

The fourth rule (R57) relates to discharge of a hazardous substance as a non-complying activity, which is unlikely to be applicable to this site.

9.1.4 Greater Wellington Regional Discharges to Land Plan Updated July 2014

The Greater Wellington Regional Discharges to Land Plan remains in effect in conjunction with the PNRP until such time as the PNRP is operative. Rules 21 and 22 of the Regional Discharges to Land Plan deal specifically with contaminated sites and should be assessed by a planner as part of an Assessment of Environmental Effects (AEE).

9.2 Occupational Health and Safety

Due to the extent of unconfirmed fill material at the site, a CSMP should be implemented prior to construction works to protect construction workers at the site.

The objective of the CSMP should be to document the minimum procedures and standards to be followed during the course of earthworks and construction to manage and/or remove the risks posed by soil and groundwater contamination. Through implementation of the CSMP, the risk posed to site users (principally construction workers during redevelopment) and the surrounding environment (including human receptors) can be substantially reduced to an acceptable standard.

The CSMP is for the purpose of providing a framework for the development of particular contaminated soil and groundwater control practices and procedures to improve health and safety during the works and minimise effects on the surrounding environment and community as part of the current activity. The CSMP should be designed to provide detail regarding general management principles for contaminated soil and groundwater that may arise during the construction works.

10 Conclusions and Recommendations

10.1 Conclusions

DSI has been completed in order to assess the quality of shallow soils and investigate HAIL activities identified on site at PSI stage. This DSI was completed to support a Resource Consent application for the development of two major new structures within the New Zealand Parliamentary Complex.

A review of existing available desktop information identified three HAIL activities on the site, including bulk chemical storage (A8), use of ACM of unconfirmed quality (E1) and histsorical uncontrolled filling (G5). The assessment of contamination was based on targeted ground investigation, laboratory testing and risk assessment.

No exceedances of Tier 1 soil criteria were reported during intrusive investigation works. Shallow soil samples consistently exceeded generally background concentrations for the greater Wellington region, indicating the potential presence of uncontrolled fill material across the site. Asbestos fibres were not identified in any soil samples collected.

Groundwater sample laboratory results identified zinc concentrations above Tier 1 criteria within perched groundwater. Laboratory results at BH1-2 reported elevated E. Coli and ammonia concentrations, which can be indicative of the presence of wastewater. Figure 2 indicates sub-surface utilities, including wastewater lines, are in close proximity to BH1-2.

Figure 2: Location wastewater infrastructure in vicinity of BH1-2 (image courtesy of WCC Webmap, wellington.govt.nz/webmap/wccmap.html)

The conceptual site model has identified potentially complete source-pathway-receptor linkages between:

- Construction workers and uncontrolled fill mateiral; and
- On- and off-site users and uncontrolled wastewater discharge.

Based on laboratory results collected to date the shallow soil present across the site is considered likely fill material and should be managed appropriately or if disposed on- or off-site.

10.2 Recommendations

Based on the findings of this DSI, the following actions are recommended:

- Application for a controlled activity Resource Consent prior to development of the site is likely to be required to comply with NES-Soil regulations and completion of a Contaminated Site Management Plan.
- Application for a discretionary activity (restricted) consent is likely to be required to comply with Rule 32.2.1 of the Wellington City Council District Plan (WCCDP).
- Any work involving the disturbance of shallow soil should be undertaken in accordance with method statements and risk assessment prepared in accordance with relevant guidance including the Health and Safety Act (2016).

11 Limitations

Aurecon has prepared this report for Parliamentary Services in accordance with the brief described at the start of this report. This report is based on field work undertaken between 19 September and 15 November 2017, and is based on the conditions encountered and information reviewed at the time of preparation of the report. Aurecon does not make any representation or warranty that the conclusions in the report can be extrapolated for future use as there may be changes in the condition of the site, applicable legislation or other factors that would affect the conclusions contained in this report.

This report has been prepared on instruction of Parliamentary Services and may be used by and relied on by Parliamentary Services. Aurecon accepts no responsibility or liability for damages, if any, suffered by any other third party. This report should be read in full and no excerpts are to be taken as representative of the whole report. To ensure its contextual integrity Parliamentary Services must not distribute the report to third parties in part only.

Soil and rock formations are often variable, resulting in heterogeneous distribution of contaminants across a site. Contaminant concentrations may be estimated at chosen sample locations, however, conditions between sample sites can only be inferred on the basis of geological and hydrological conditions and the nature and the extent of identified contamination. Boundaries between zones of variable contamination are often indistinct, and therefore interpretation is based on available information and the application of professional judgement.

Only a finite amount of information has been collected to meet the specific technical requirements of the Client's brief and this report does not purport to completely describe all the site characteristics and properties. The nature and continuity of the ground between test locations has been inferred using experience and judgment and it must be appreciated that actual conditions could vary from the assumed model.

This report does not provide a complete assessment of the environmental status of the site, and it is limited to the scope defined herein. Should further information become available regarding the conditions at the site, including previously unknown likely sources of contamination, Aurecon reserves the right to review the report in the context of the additional information.

Where this report indicates that information has been provided to Aurecon by Parliamentary Services or third parties, Aurecon has made no independent verification of this information except as expressly stated in the report.

All relevant legislation in the jurisdiction in which the site is located and relating to the works has been complied with by Aurecon as at the date of this report.

Appendices

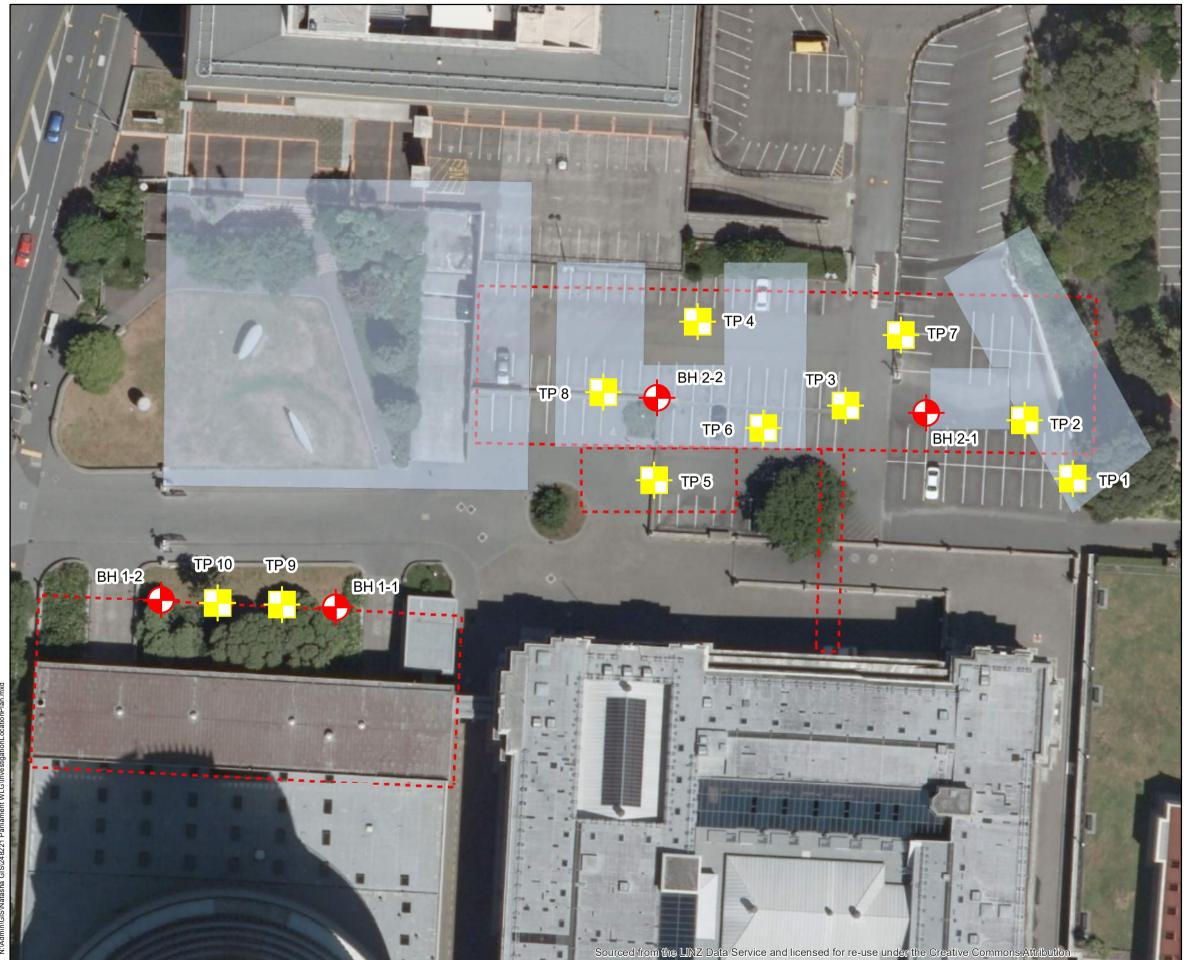
Appendix A Figures

New Zealand Parliament - Ministerial and New Members Development Detailed Site Investigation Figure A.1: Site Location Plan

aurecon

Legend

★ Site Location



Former Building Footprint

- Proposed Development
- -- Footprint

Version: 0

1:500

New Zealand Parliament - Ministerial and New Members Development Detailed Site Investigation

Job No: 248221 Projection: NZGD 2000 NZTM Drawn: NDS Reviewed: SFH

aurecon

Legend

- Former Building Footprint
- Proposed Development

Borehole Locations

Test Pit Locations

Date: 27/10/2017

Version: 0

Figure A.2: Investigation Location Plan

Appendix B Bore Hole and Test Pit Logs

Drill Diar		/letho	od: e:	ORMA 30HP Webst	Tract	tor	Northing: 5	ZTM 1748722.5m 5428824.3m I/A		Date St Date Co Inclinati Orienta	omple on:						Logged by: I. Allan Input by: I. Allan Checked by: S. Howell Verified by:	
INIetriou/Date	R.L. (m)	Length (m)	Sample	Graphic Log	Layer Code		Material Descrip	tion	Weathering/USC	In Situ Testing	MC (%)	TCR (%)	SCR (%)	RQD (%)	ws ws Fracture ^{cs} Snacino		Stratigraphy Defect Description	
				x x x x x x x x x x x x x x x x x x x		moist to wet, low [Based on mate [auger] 0.2m: Sandy Sli to stiff', moist, lo fine, angular to	ome sand, minor clay; v plasticity. Many rootle rial removed by drillers LT with minor gravel; da w plasticity; sand is fin subangular. Some root lers using spade/hand a	ts, few wood fragments using spade/hand ark orange grey. "Firm e to coarse; gravel is lets. [Based on materia	s. . J)m: TOPSOIL	
		_ _ _ _ _		x x x x x x x x x x x x x x x x x x x		plasticity. Few la GRAVEL, angu	LT; grey. "Firm to stiff", ayers of fine to coarse S lar to subangular. [Base spade/hand auger]	SAND and fine	 1									
		2	ES			1.5m: Clayey, s wet, moderate t	andy SIL T; grey. "Stiff t o high plasticity; sand is	o very stiff", moist to s fine to coarse.								 1 	1.75m: PID = 0.6 ppm	
		- - - - - - - - - -			· · · · ·	2.2m: Fine to cc angular to suba obtained.	parse GRAVEL; grey. W ngular. Note: only 200n	Vet to saturated; nm of disturbed materia	 al									
		- - -	ES			3.5m: Silty fine \$ 3.6m: with so	SAND; grey. Moist. Rar me silt	e rootlets.								 3 	8.5m: PID = 0.8 ppm	
		_ 	ES ES				edium SAND with som medium, angular to sut									3 4	3.8m: PID = 1.4 ppm Im: PID = 0.9 ppm	
		-	ES	× × × × ×		4.2m: SILT with moist, low to mo	some sand and clay; g oderate placticity.	rey. "Very stiff to hard,									I.4m: PID = 0.8 ppm	
		_ _ _ 5		× × × × × × × × × × × × × × × × × × ×		4.5m: becomplasticity.	es: Clayey SILT; no sar	nd, moderate to high										

Database File: 24221 EM/IRO INVESTIGATION GPJ LDrary file: AURECON LIBRARY 2011-08-06(1), GLB Template File: AURECON DH LOG V3.0 Date Generated: 27/10/2017

lling Metho meter Cor	EHOLE INFORMATION CO-ORDINATES: NZTM ng Method: 30HP Tractor Easting: 1748722.5m													Sheet 2 of 2	
meter Core: htractor: Webster Drilling Ground Level: N/A				tor	Easting: 17 Northing: 54	748722.5m 128824.3m		Date Sta Date Co Inclinati Orientat	omple on:	ted:				Logged by: I. Allan Input by: I. Allan Checked by: S. Howell Verified by:	
R.L. (m) Length (m)	Sample	Graphic Log	Layer Code		Material Descript	ion	Weathering/USC	In Situ Testing	MC (%)	TCR (%)	SCR (%)	RQD (%)	ws ws Fracture	Stratigraphy Defect Description	
	ES	×		4.2m: SILT with s moist, low to mo	some sand and clay; gro derate placticity.	ey. "Very stiff to hard,	>						>> 2	5m: ALLUVIUM/COLLUVIUM 5.05m: PID = 1.1 ppm	
-		×		grey. Moist; grav	arse SAND with some s el is fine, angular. Rare	rootlets.									
					ravel fine to coarse, an ND / GRAVEL disturbed	•	_								
-	ES			subangular; san	e to coarse GRAVEL; gr d is fine to coarse. AND; grey. Moist to we		 Л							5.8m: PID = 0.5 ppm	
6		* * * * * * * * * * * *													
-		× × × × × × × × × × × × × × × × × × ×		6.2m: Sandy SIL plasticity; sand is	T; grey. "Very stiff to ha fine.										
-		× · . × · .)		. 6.7m: no sand	, some clay; moderate t	_									
- 7	ES			rootlets 6.75m: Fine to co	parse GRAVEL with sor pist to wet; angular to su]							6.9m: PID = 1.3 ppm		
-				7.05m: Fine SAN	ID with some silt; blue g	rey. Moist to wet.									
_				7.4m:rare roo	tlets										
-	50			7.7m:no rootle	ets, minor gravel, fine, s	ubrounded.									
8	ES			Moist; angular to rootlets.	y fine to medium GRAV subrounded; sand is fir y fine to coarse SAND;	ne to coarse. Rare								7.8m: PID = 0.8 ppm	
-				fine to medium, a	angular to subrounded.	Rare rootlets.	_								
-				wet; gravel is and	gular to subrounded. Ra all wood fragments).	are organics									
-	ES													8.7m: PID = 1.3 ppm	
9		0		saturated; angula	arse GRAVEL with som ar to subangular; sand i	s fine to coarse.									
		× × × × × ×			me sand and clay; bluis dium plasticity; sand is f										
		× ×		9.4m: Silty fine S gravel is fine to n	AND with minor gravel; nedium, angular.	bluish grey. Moist;									
				9.6m: Sandy fine grey. Moist; angu	e to coarse GRAVEL wit ular to subrounded; san	h some silt; bluish d is fine to coarse.									

A. Abbreviations: TCR = Total Core Recovery; PID = Photoionization Detector; ES = Environmental Soil Sample.
 Piezometer from GL: Toby cover, 0.5m Pipe & Bentonite, 4.5m Slotted pipe and sand, sand base, bentonite base.
 Dashed lines show estimated layer depth.

Log Scale 1

rilling Met iameter C ontractor:	hod: ore:	ORMA 30HP Webst	Tract	tor	CO-ORDINATES Easting: Northing: Ground Level:	: NZTM 1748723.1m 5428806.3m N/A		Date St Date Co Inclinati Orientat	omple ion:					Logge Input t Check Verifie	ed by: S. Howell	
R.L. (m)	Sample	Graphic Log	Layer Code		Material Desc	ription	Weathering/USC	In Situ Testing	MC (%)	TCR (%)	SCR (%)	RQD (%)	ws ws Fracture		Stratigraphy ect Description	
	ES	× × · · · · · · · · · · · · · · · · · ·	× × ×	moist to wet, low [Based on mate [auger] 0.2m: Sandy Sli to stiff', moist, lo fine, angular to	v plasticity. Many roo erial removed by drill LT with minor grave pw plasticity; sand is	y; brown. "Soft to firm", otlets, few wood fragmen ers using spade/hand ; dark orange grey. "Firm fine to coarse; gravel is botlets. [Based on materi ad auger]	$\frac{1}{1}$							0m: TOPSO 0.1m: PID = 0.2m: ALLU	1.3 ppm /IUM/COLLUVIUM	
	1 x x 1 x x x x x			 ed							 1.2m: PID = 	1.5 ppm				
2	_ ES	* × ×	- · · · · · · · · · · · · · · · · · · ·	coarse GRAVE	EL, saturated, angular [disturbed material] SILT; greyish brown. "Firm to stiff", moist,									 2.1m: PID =	1.0 ppm	
	ES	× 		2.4m: Silty CLA plasticity.										2.6m: PID =	1.4 ppm	
3	ES	× × × ×		3.2m: Silty fine t										3.1m: PID =	1.6 ppm	
	ES			3.4m: Sandy fin	fine to medium SAND with some gravel; light ; gravel is fine to medium, angular to subrounded. dy fine to coarse GRAVEL with some silt; light to wet; angular to subrounded; sand is fine to									 3.6m: PID =	1.8 ppm	
4	-			breaks down to	sand by hand.	ge staining, some gravel										
				.t												
	ES					ne to medium, angular to)							4.7m: PID =	1.7 ppm	

Database File: 24221 ENVIRO INVESTIGATION GPJ LIbrary file: AURECON LIBRARY 2011-05-03(1). GLB Template File: AURECON DH LOG V3.0 Date Generated: 27/10/2017

R.L. (m) Length (m)	ig Method: 30HP Tractor Easting: 1748723.1m eter Core: Northing: 5428806.3m iactor: Webster Drilling Ground Level: N/A (i) iactor: iactor iactor Material Description			3.1m 5.3m		Date Con Inclinatio Orientati	n:	ed:	29/0 N/A N/A			Logged by: I. Alla Input by: I. Alla Checked by: S. He Verified by:	an		
Len R.I	Sample	Graphic Log	Layer Code		Material Description		Weathering/USC	In Situ Testing	MC (%)	TCR (%)	SCR (%)	RQD (%)	wws Mws CS Spacing	Stratigraphy Defect Descrip	
-		× ; × ;	>		minor clay; light orange with lig stiff to hard", moist, low plastic		>							5m: ALLUVIUM/COLLUVIUM	
-		\circ			dy fine to coarse GRAVEL; ora gular to subangular; sand is fin										
- - - -	ES	× × × × × × × × ×		to hard, moist, le	LT with some gravel; orange gr ow plasticity; sand is fine to coa angular to subrounded.									5.6m: PID = 1.6 ppm	0
 				Moist; angular te	dy fine to coarse GRAVEL; yellowish orange. o subangular; sand is fine to coarse. minor sand and trace gravel; yellowish grey. w plasticity; sand is fine; gravel is fine, angular										
-		× : × : × : × :	*	6.3m: SILT with "Hard", moist, lo to rounded.	minor sand and trace gravel; y ow plasticity; sand is fine; grave	ellowish grey. I is fine, angular									
- - - - - - - - - -	ES				dy fine to coarse GRAVEL; gre gular to subrounded; sand is fir									6.7m: PID = 1.7 ppm	
- 8 - - - - - - -	ES													7.8m: PID = 1.4 ppm	
9 - - - - - - - - - - - - - - - - - - -				to subangular. 1 9.1m: Fine to co	rse GRAVEL; yellow grey, satu 100mm of disturbed material ob parse GRAVEL with some silt a pist to wet; angular to subangul	nd sand;								9.8m: PID = 0.7 ppm	

ing net		od: re:	ORMA 30HP Webs	Tract	tor	CO-ORDINATES Easting: Northing: Ground Level:	5: NZTM 1748704.6m 5428902.5m N/A		Date St Date Co Inclinati Orienta	omple on:					Inpu Che	ged by: t by: cked by: fied by:	I. Allan I. Allan S. Howell	
R.L. (m)	Length (m)	Sample	Graphic Log	Layer Code		Material Des	cription	Weathering/USC	In Situ Testing	MC (%)	TCR (%)	SCR (%)	RQD (%)	ws ws Fracture cs vcs Spacing	D	Stratig efect De	raphy scription	and the line to an
	-				0m: ASPHALT 0.05m: BASECO	DARSE		-1								IALT/BASE	COARSE	Ī
					bricks and conc subangular; san during service c	rete pieces; browni nd is fine to coarse. learance excavatio	AVEL with numerous h grey. Moist; angular to ffill material observed] eam exposed on side of								0.3m: FILI			
				<pre>x x x x x x x x x x x x x x</pre>											1m: ALLU			
	2	ES	× :		2.0										2.4m: PID 2.8m: PID			
		ES	$\begin{array}{c} \times \\ \times $		to subangular 3m: Sandy SILT moist, low plasti rootlets. 3.2m: Silty fine S	with minor gravel; icity; sand is fine; gr	s fine to coarse, angular light bluish grey. "Stiff", avel is fine, angular. Rare gravel; light bluish grey.	— -										
		ES			 roots and rootle 3.6m: SILT with high plasticity. A 3.8m: Sandy fin bluish grey. Wei 4m: Medium to other 	D with some silt; br ts. some sand; dark b bundant roots and e to coarse GRAVE t; sand is fine to coa	L with some silt; dark Irse. Some rootlets.								3.5m: PID	= 0 ppm		
		ES			4.3m: Clayey, si Moist; angular to 4.4m: Fine to co	ilty fine to coarse G o subangular. parse SAND with so	RAVEL; light bluish grey. me gravel and minor silt; medium, angular to								4.4m: PID	= 1 ppm		

illir am	EHC	DLE /letho r Coi	od: re:	ORMA 30HP Webst	Tract	tor	CO-ORDINATES: NZTM Easting: 1748704.6m Northing: 5428902.5m Ground Level: N/A		Date St Date Co Inclinati Orienta	omple ion:					Logged by: I. Allan Input by: I. Allan Checked by: S. Howell Verified by:	
	R.L. (m)	Length (m)	Sample	Graphic Log	Layer Code		Material Description	Weathering/USC	In Situ Testing	MC (%)	TCR (%)	SCR (%)	RQD (%)	ws ws fracture cs Spacing	2 Stratigraphy Defect Description	
	 orangy grey. Moist; angle coarse. orangy grey.					orangy grey. Mo	to coarse GRAVEL with some silt; light ist; angular to subrounded; sand is fine to	Λ							5m: ALLUVIUM/COLLUVIUM	
		6 7 	ES	× × × × × ×		6.4m: SILT with moist, low plasti 6.6m: Silty, sand Moist; angular to 6.8m:some sa	dy fine to medium GRAVEL; orange grey. o subrounded; sand is fine to coarse. and ome clay; yellow. "Very stiff", moist, low	n							6.4m: PID = 0 ppm	
		- - - 8 -	ES			gravel, fine, ang 7.9m: minor si	D with some silt; orangy grey. Moist. Rare ular to subrounded.	w							8m: PID = 0 ppm	
		- - - - - - - - - - -				8.5m: Sandy find	e to coarse GRAVEL with some silt; greyish gular to subrounded; sand is fine to coarse									
	-	 _ _ _ 														

Database File: 24221 EWIRO INVESTIGATION GPJ Library file: AURECON LIBRARY 2011-06-03(1),GLB Tomplate File: AURECON DH LOG V3.0 Date Generated: 27/10/2017

30 Dril Dia	REH ling l	Metho er Coi	INF od:	ORMA 30HP Webs	Trac	tor	CO-ORDINATES: NZTM Easting: 1748700.3m Northing: 5428871.8m Ground Level: N/A		Da Inc	te Sta te Cor linatio entati	mplet m:	ed:				Inpi	ged by: it by: ecked by: ified by:	I. Allan I. Allan S. Howell	
Method/Date	R.L. (m)	Length (m)	Sample	Graphic Log	Layer Code		Material Description	Weathering/USC	:	In Situ Testing	MC (%)	TCR (%)	SCR (%)	RQD (%)	ws ws Fracture cs Spacing			graphy escription	
						bricks, timber a angular to suba during excavation 1.05m: Clayey S	dy fine to coarse GRAVEL with numerou nd concrete pieces; brownish grey. Moisi ingular; sand is fine to coarse. [fill observ	t; ed									<u> </u>		
			ES	x x x x x x x x x x x x x x x x x x x		"Very stiff", mois 45 degrees. 2.3m: Sandy fin Moist; angular t 2.4m: Silty fine gravel is fine, al	T; greyish orange with dark orange bandi st, low plasticity; sand is fine. Banding at o subangular; sand is fine to coarse. SAND with minor gravel; light grey. Moist ngular to subrounded. LT; light grey with orange banding. "Very plasticity.	approx											
		3 	ES			4m: Silty, grave gravel is fine to 4.1m: Fine SAN 4.2m: Sandy SI "Hard", moist, Id	nedium SAND with some silt and minor gr gravel is fine, angular to rounded. Jish grey, gravel is fine to medium. Illy fine to medium SAND; light grey. Moist coarse, angular to subangular. JD with minor silt; light bluish grey. Moist. LT; greenish grey with orange banding. Dw plasticity. Rare gravel, fine, angular to	it;								 3.9m: PIE 			
			ES	××		Moist. Banding	SAND; light blue with dark orange bandir at approx 20 degrees. avel, fine to medium, subangular.	ng.								 4.7m: PIE) = 1 ppm		

Database File: 248221 ENVIRO INVESTIGATION GPJ L LBrany file: AURECON LIBRARY 2011-06-03(1):GLB Template File: AURECON DH LOS V3.0 Data Generated: 27/10/2017

orilli Diar	REH ing N	urecono OLE Metho er Cor	INF od: re:		Trac	tor	ct Reference: CO-ORDINATES Easting: Northing: Ground Level:			Date St Date Co Inclinati Orientat	omplei on:	ted:					Sheet 2 o Logged by: I. Alla Input by: I. Alla Checked by: S. Ho Verified by:	n n
	R.L. (m)	Length (m)	Sample	Graphic Log	Layer Code		Material Desc	ription	Weathering/USC	In Situ Testing	MC (%)	TCR (%)	SCR (%)	RQD (%)	s Fracture	CS Spacing	Stratigraphy Defect Descripti	on
			ES				e to coarse SAND w Moist; gravel is fine to		>								5m: ALLUVIUM/COLLUVIUM	
			ES			banding. "Very s	iinor clay; greenish g stiff", moist, low plast								ΪÌ			
						grey. Moišt; gra 7.25m: Sandy S	o coarse SAND with some gravel; bluish vel is fine, angular to subrounded. SILT; greyish blue. "Very stiff", wet, low oots and rootlets.										6.7m: PID = 1 ppm	
		_ 8	ES	× × × × × × × ×		7.7m: Clayey Si Rare roots and		m", moist, high plasticity.									7.8m: PID = 1 ppm	
		- - -	ES				oarse GRAVEL with some sand; dark greyish Jlar to subangular; sand is fine to coarse.										8.4m: PID = 0 ppm	
		9		× × × × × × × × × × × × × × × × × × ×	>	8.9m: SILT with moist, low plasti	minor sand; light blu city.	ish grey. "Very stiff",										
					dark greyish blue. Wet;													
		_			1	9.7m: Sandy fin	medium, angular to s e to coarse GRAVEI subrounded; sand is	; dark greyish blue.									9.7m: PID = 0 ppm	
		 10]	wet, angular to	subrounded; sand is	a line to coarse.										

Database File: 24221 ENVIRO INVESTIGATION GPJ Lbrary file: AURECON LIBRARY 2011-05-03(1), GLB Template File: AURECON DH LOG V3.0 Date Generated: 27/10/2017

ć	2U	irecon	TE	ST PIT RE	CORD		TEST PI	T NO.	TP	91
1.000		econgroup.com					PROJEC	T NO.	24	8221
PROJECT		/ Zealand Parliament - Minister / Zealand Parliament	ial and New	Members, Detailed	Site Investig	gation				
METHOD	Test	t Pit	CO-	ORDINATES ()		LOGO			CHEC	
MACHINE	& NO.	2T Excavator				N KIN	G		SHO	WELL
CONTRAC	TOR	Aurecon	GROL	UND LEVEL	m RL	DATE			DATE 25/10	
			STRATA			1		SAN		S & TESTS
	Legend			Description				Depth	No	Remarks/Tests
0.00-0.05		Asphalt [FILL - SURFACE SE	AL]							
0.05-0.20	₩ <i>0.</i> ,∞ % , , , , ,	Silty sandy fine to coarse, sub Loosely packed to medium de	angular to s ense, wet. S	subrounded GRAVEL Sand is medium to co	., grey to dar arse [FILL].	rk grey				
	×0 o							0.10		TP1_0.1 PID = 0.8 ppm
	x0 => 0 X1									1 ID - 0.0 ppm
0.20-0.60	8 - <u>0 × 5</u> - ∞	Silty gravelly fine to coarse SA	ND. vellowi	ish brown. Medium c	dense, moist	t. Grav	el is			
	· · · × . · · a × · ·	fine to coarse, subrounded to	subangular	. Occasional fine brid	ck fragments	s [FILL]].			
	× .									
	χο 									
	× . `o`.×									
	× . 							0.40		TP1_0.4 PID = 0.8 ppm
	· · × · · · × · · · · · · · · · · · · ·									1 12 0.0 ppm
	`o`.× `× . 									
	×0 ×0 ×0									
	 × . ·									
		End o <i>Termin</i>	of Test Pit at ation Reaso	t 0.60m, on 18/09/20 on: Target depth reac	17 hed					
		IPPORT: None							 C	ENERAL
STABILIT										EMARKS
⊨		1								
		A T								
SHORING STABILIT		B 1								
		C								
All dimens	ions i	n metres CLIENT Parliame	ntary Serv	vices	PP Pocket Po ↓ Insitu Var			¥ Water Le	vel	

		irecon		TEST PIT REC	ORD		TEST PI	T NO.	TF	2
1.12		econgroup.com					PROJEC	T NO.	24	8221
PROJECT		/ Zealand Parliament - Minister / Zealand Parliament	ial a	nd New Members, Detailed Sit	te Investig	ation				
METHOD	Test			CO-ORDINATES ()		LOG	GED		CHE	CKED
MACHINE	& NO.	2T Excavator		-		N KI	NG		S HO	WELL
CONTRAC	TOR	Aurecon		GROUND LEVEL	m RL	DAT			DATE	
						18/09	9/2017		25/10	-
Depth	Legend		STI	RATA Description				SA Depth		S & TESTS Remarks/Tests
0.00-0.05		Asphalt [FILL - SURFACE SE	AL]	Decemption						
0.05-0.20		Sandy fine to coarse, subangu packed, wet. Sand is medium	ular	GRAVEL with trace of silt, grey	/ to dark g	rey. L	oosely			
	0 (). . () ()	packed, wet. Sand is medium		oarse [FILL].						
	0. <u>0</u> . 000							0.15		TP2_0.15
0.20-0.55	000 000			0.64.5		0	dia Guar	0.10		PID = (no reading)
	ו ו ו ו ו		to co	ay, grey. Soft to firm, moist, low arse, subangular to angular. S	Single pied	ce of	ia is line			
	× • × • × • × •									
	Ĉo×∙ [
	× × · · · × · · · × · · · · · · · · · ·									
	×,``o									
	×^^> × ·× × ·×							0.45		TP2 0.45
	× · · × × · ×									PID = (no reading)
	× 0 × × × • • × •	E. d.	(-							
		End o Termin	ation	st Pit at 0.55m, on 18/09/2017 <i>Reason:</i> Target depth reache	ed					
/ 5 1										
SHORIN STABILI		IPPORT: None								GENERAL REMARKS
▲		1 <u> </u> A								
D		B 1								
		c ¥								
All dimens	sions ir	n metres	ntar	y Services	Pocket Pe , Insitu Var			Ţ Water L	evel	

Č	aureco	n	TEST PIT RECO	RD	TEST PI	I NO.	TP	'3
ww	ww.aurecongroup.com				PROJEC	T NO.	24	8221
PROJECT	New Zealand Parlian New Zealand Parlian		and New Members, Detailed Site In	ivestigatio	n			
METHOD	Test Pit		CO-ORDINATES ()		GGED		CHEC	
MACHINE	& NO. 2T Excavator		_	NK	(ING		SHO	WELL
CONTRAC	TOR Aurecon		GROUND LEVEL	m RL 18/	TE 09/2017		DATE 25/10/	
		ST				SAM	JPI F	S & TESTS
Depth	Legend		Description			Depth	No	Remarks/Tests
0.00-0.09	Asphalt [FILL -	SURFACE SEAL]	·					
0.05-0.00	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	d to medium dense	D, greyish brown (with orangeish bro e, moist. Gravel is fine to coarse, so	ome cobbl	ions). es,			
	x o x o x o x					0.20		TP3_0.2 PID = 0.2 ppm
	x					0.40		TP3_0.4 PID = 0.1 ppm
		End of I Terminatic	est Pit at 0.50m, on 18/09/2017 <i>In Reason:</i> Target depth reached					
	G/SUPPORT: Non TY:	le						GENERAL EMARKS
	AE	3 1 ⊻						
All dimens	ions in metres	NT Parliamenta	ry Services	ocket Penetro nsitu Vane She		¥ Water Le	vel	

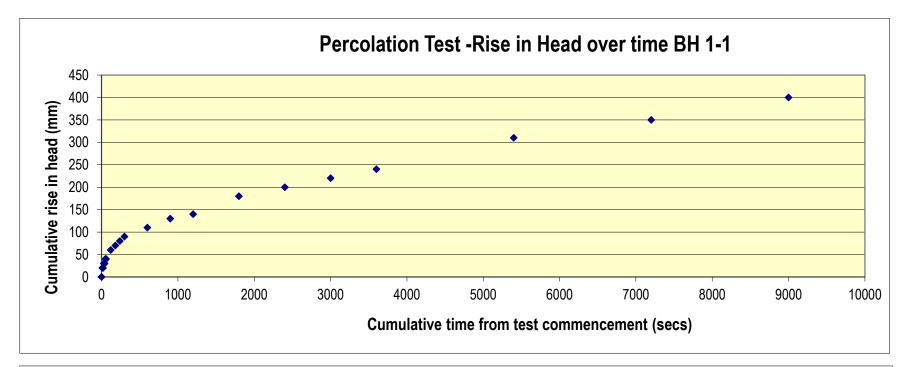
		irecon		TEST PIT REG	CORD		TEST PI	T NO.	ТР	4
		econgroup.com					PROJEC	T NO.	24	8221
PROJECT		/ Zealand Parliament - Minister / Zealand Parliament	ial a	nd New Members, Detailed \$	Site Investig	gation				
METHOD	Test	t Pit		CO-ORDINATES ()		LOG N KI	GED		CHEC	
MACHINE	& NO.	2T Excavator				DAT			DATE	WELL
CONTRAC	TOR	Aurecon		GROUND LEVEL	m RL		∟ 9/2017		25/10	
			ST	RATA						S & TESTS
Depth 0.00-0.07		Asphalt [FILL - SURFACE SE	AL1	Description				Depth	No	Remarks/Tests
0.07-0.27	×0 . · · × · · α	Silty gravelly fine to coarse SA wet. Gravel is medium to coa	AND, rse,	grey to dark grey. Loosely p subangular to angular [FILL]	packed to m	nedium	n dense,			
	' o' .× '× ' .							0.15		TP4 0.15
	·×							0.15		PID = 0.2 ppm
	· · · · · · · · · · · · · · · · · · ·									
0.27-0.53	× · · × × • × × · ×	Sandy gravelly SILT, yellowish plasticity. Sand is medium to	ו bro coar	wn (with light grey inclusions	s). Soft to fi	rm, m	oist, high			
	×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×, ×	angular [FILL].	coar		SC WIT SON		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	× × × × × × × × × × × × × × × × × × ×							0.35		TP4_0.35 PID = 0.1 ppm
	× · · · · × · · · × · · · × · · ·									
	×^o									
	×°^•× ×`×` ×	End	of To	at Dit at 0.52m an 19/00/20/	17					
:		Termin	atior	st Pit at 0.53m, on 18/09/20 <i>Reason:</i> Target depth reach	hed					
=										
SHORIN STABILI		IPPORT: None								BENERAL EMARKS
		1								
		A T								
		B 1								
		C		- Comilar -	DD Backet P	onotroi	neter Test	Wator !	ovol	
All dimens	sions ii	n metres CLIENT Parliamer	ntar	y Services	PP Pocket Po ↓ Insitu Vai			¥ Water L		

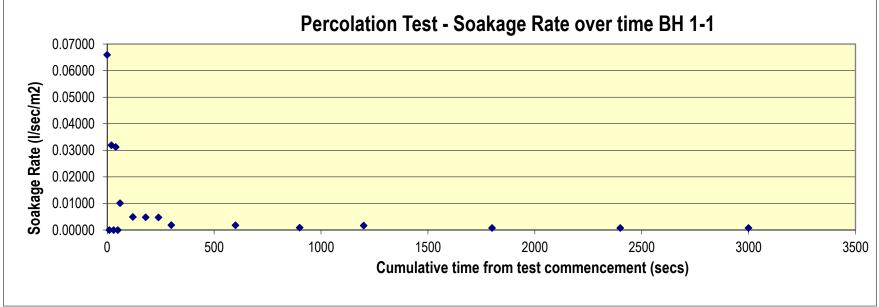
	aurecon	TEST PIT NO. TP5							
	ww.aurecongroup.com			PROJEC	CT NO.	24	8221		
PROJECT	New Zealand Parliament - Minister New Zealand Parliament	ial and New Members, Detailed S	ite Investigati	on					
METHOD	Test Pit	CO-ORDINATES ()		DGGED		CHEC			
MACHINE	& NO. 2T Excavator			KING			WELL		
CONTRAC	TOR Aurecon	GROUND LEVEL	m RI	ATE \$/ 09/2017		DATE 25/10			
		STRATA			SAN	ИРLE	S & TESTS		
Depth 0.00-0.10	Legend	Description			Depth	No	Remarks/Tests		
0.10-0.17	$\begin{bmatrix} x \\ a \\ x \end{bmatrix}$ fine to coarse, some cobbles,	ND, grey to dark grey. Loosely p	oacked, wet. G	iravel is	0.15		TP5 0.15		
0.17-0.60	Silty gravelly fine to coarse SA dense to dense, moist. Grave Frequent brick fragments and	dium angular.	_ 0.15		TP5_0.15 PID = 0.3 ppm				
	· · · · · · · · · · · · · · · · · · ·		0.35		TP5_0.35 PID = 0.3 ppm				
Image: State of the state o									
SHORIN STABILI	SHORING/SUPPORT: None STABILITY: A B 1 B 1 B 1 B 1								
	C sions in metres	ntary Services	Pocket Penet ↓ Insitu Vane S		¥ Water Le	vel			

à	urecon	TEST PIT RE	CORD	TEST P	IT NO.	TF	6
	recongroup.com			PROJE	CT NO.	24	8221
	w Zealand Parliament - Ministeri w Zealand Parliament	ial and New Members, Detailed	Site Investig	Jation			
METHOD Tes	st Pit	CO-ORDINATES ()		logged n king		CHE	CKED WELL
MACHINE & NC). 2T Excavator			DATE		DATE	
CONTRACTOR	Aurecon	GROUND LEVEL	m RL	18/09/2017		25/10	
	1	STRATA			1	_	S & TESTS
Depth Legend 0.00-0.09 0.09-0.30	to wet. Gravel is medium to co	Description AL] ND, grey (with orange inclusion oarse, some cobbles, subangul	ns). Medium ar to angular	dense, moist [FILL].	Depth	No	Remarks/Tests
0.30-0.55	Sandy gravelly SILT, yellowish moist. Sand is fine to coarse.	n brown (with orange inclusions) gravel is medium to coarse, so	me cobbles, s	ense to dense, subangular to	0.25		TP6_0.25 PID = 0.2 ppm
	angular. Frequent brick fragm	ients and occasional whole bric	ks [FILL].		0.50		TP6_0.5 PID = (no reading)
	End o Termin	of Test Pit at 0.55m, on 18/09/20 <i>ation Reason:</i> Target depth read)17 ched				
SHORING/SU STABILITY:	JPPORT: None						GENERAL REMARKS
SHORING/SU STABILITY: D All dimensions							
All dimensions	in metres CLIENT Parliamer	ntary Services		enetrometer Test ne Shear Test	¥ Water Le	vel	

	aurece	on	TEST PIT RE	CORD	TEST PI	T NO.	TP	7
	ww.aurecongroup.com				PROJEC	CT NO.	24	8221
PROJECT	New Zealand Parli New Zealand Parli		and New Members, Detailed	Site Investig	ation			
METHOD	Test Pit		CO-ORDINATES ()		LOGGED		CHEC	
MACHINE	& NO. 2T Excavator	r			N KING		SHO	WELL
CONTRAC	TOR Aurecon		GROUND LEVEL	m RL	DATE 18/09/2017		DATE 25/10	
					10/03/2017	541		S & TESTS
Depth	Legend	01	Description			Depth	No	Remarks/Tests
0.00-0.08	Asphalt [FILL	- SURFACE SEAL]					
0.08-0.20	Gravelly med Gravel is med	lium to coarse SANI dium to coarse, som	D with trace of silt, greyish bro e cobbles, subangular to ano	own. Loosel <u>y</u> gular [FILL].	/ packed, wet.			
						0.15		TP7_0.15 PID = 0.1 ppm
0.20-0.50	Silty gravelly Silty gravelly dense, moist.	medium to coarse S . Gravel is medium	SAND, yellowish brown (with to coarse, some cobbles, and	grey inclusion gular [FILL].	ns). Medium	-		
	· · · × · × · · · · • · × · × · · · · × · · · · × · ·							
	· · · × · · · · · · · · · · · · · · · ·					0.45		TP7_0.45 PID = 0.3 ppm
		End of T <i>Terminatio</i>	est Pit at 0.50m, on 18/09/20 In <i>Reason:</i> Target depth read)17 ched				
=								
SHORIN	G/SUPPORT: No TY:	one						GENERAL EMARKS
	1 >	4						
STABILIT	A	B 1						
	С	」 ⊻						
All dimens	ions in metres	ENT Parliamenta	ary Services		enetrometer Test ne Shear Test	¥ Water Le	evel	

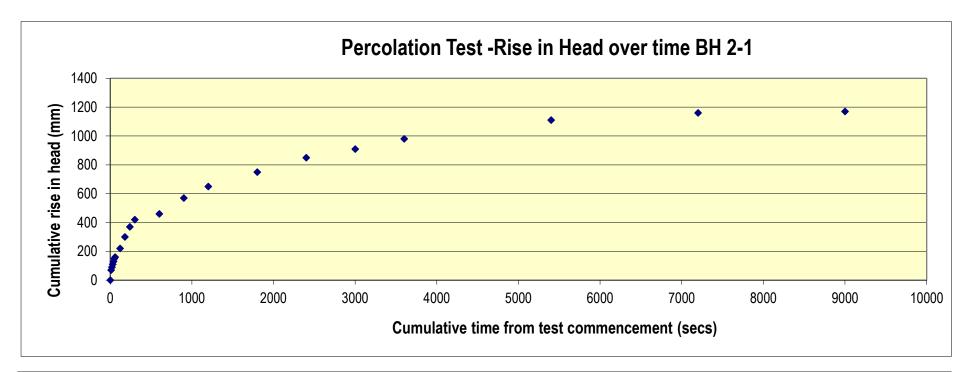
		irecon	TES	ST PIT RE	CORD	TEST PI	T NO.	TF	28
		congroup.com				PROJEC	CT NO.	24	8221
PROJECT		Zealand Parliament - Ministe Zealand Parliament	rial and New	Members, Detailed	Site Investig	ation			
METHOD	Test	Pit	CO-(ORDINATES ()		LOGGED		-	CKED
MACHINE	& NO.	2T Excavator				N KING		SHO	WELL
CONTRAC	TOR	Aurecon	GROL	JND LEVEL	m RL	DATE 18/09/2017		DATE 25/10	<u> </u>
			STRATA				SA	MPLE	S & TESTS
Depth 0.00-0.08				Description			Depth	No	Remarks/Tests
		Interlocking bricks [FILL - SU		-					
0.08-0.15		Medium to coarse SAND with dense, moist. Gravel is fine t	to medium, s	ubrounded to round	ed [FILL - BA	SECOURSE]			
0.15-0.50	×0 · × · 0 × ·	Silty gravelly fine to coarse S moist to wet. Gravel is mediu	AND, greyish um to coarse,	n brown. Loosely pa , some cobbles, sub	acked to med prounded to s	um dense, ubangular.			
	` o` .×	Brick fragments [FILL].					0.20		TP8_0.2 PID = 0.1 ppm
	× . • •								
	· · · × · · · · · · · · · · · · · · · ·								
	·× · . · ×								
	×0 . 								
	× . • o` .× • x · .						0.45		
	× . • .× ×o .	End	of Test Pit at	0.50m, on 18/09/20	017		0.45		TP8_0.45 PID = 0.1 ppm
		Termi	nation Reaso	<i>n:</i> Target depth rea	ched				
Ĩ									
SHORIN STABILI D All dimens		PPORT: None							GENERAL REMARKS
₩		1							
		A							
D		B 1							
					DD Bookat D	anotromator Taat	Wator L	aval	
All dimens	sions ir	n metres CLIENT Parliame	entary Serv	ICes		enetrometer Test ne Shear Test	¥ Water L	5VUI	

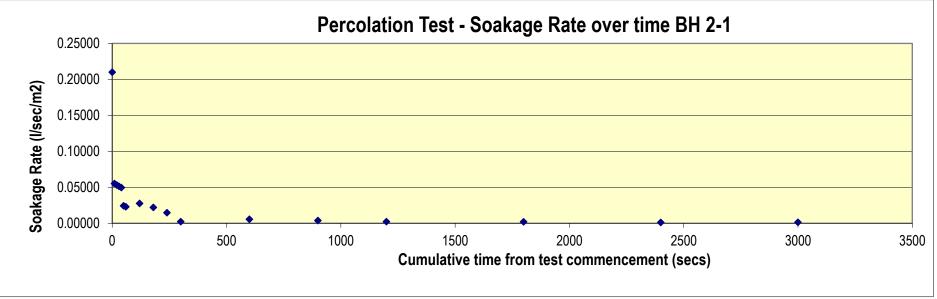

		irecon	TEST PIT RE	CORD	TEST P	IT NO.	TF	9
					PROJE	CT NO.	24	8221
PROJECT		v Zealand Parliament - Ministeri v Zealand Parliament	al and New Members, Detailed	Site Investig	ation			
METHOD	-	t Pit	CO-ORDINATES ()		LOGGED		CHE	CKED
MACHINE	& NO	NONE			N KING / S Mc	AULEY	S HO	WELL
		Aurecon	GROUND LEVEL	m RL	DATE 20/09/2017		DATE 25/10	<u>-</u> /2017
			STRATA			SAN	MPLE	S & TESTS
Depth	Legend		Description			Depth	No	Remarks/Tests
0.00-0.25		Clayey SILT, greyish brown. S 0.1 m, anthropogenic items ind	Soft to firm, moist, high plasticity cluding corroded steel bolt [TOF	ℓ. Roots and 2SOIL].	rootlets in top	0.10		TP9_0.1 PID = (no reading)
0.25-0.45	× × × × × × × × × × × × × × × × × × ×	moist, low plasticity. Sand is fi	(with grey mottles and inclusion ine to coarse [FILL / REWORK) of Test Pit at 0.45m, on 20/09/20	ed alluviu	tiff, dry to M].	0.30		TP9_0.3 PID = (no reading)
		Termin	<i>ation Reason:</i> Target depth rea	ched				
		JPPORT: None				H	F	GENERAL REMARKS
		A B C C CLIENT Parliamer	ntany Services	P⊳ Pocket Pe	enetrometer Test	▼ Water Le	evel	
All dimens	sions i	n metres	itary Services		ne Shear Test	<u>-</u> <u>-</u>		


		ire	con		TEST PIT RE	CORD		TEST PI	T NO.	TP	10
		congroup.c						PROJEC	CT NO.	24	8221
PROJECT			Parliament - Ministe Parliament	rial ar	nd New Members, Detailed	Site Investig	gation	l			
METHOD	Test	Pit			CO-ORDINATES ()			GED NG / S Mc/		CHEC S HO	
MACHINE	E & NO.	NONE					DAT			DATE	
CONTRA	CTOR	Aurecon	l		GROUND LEVEL	m RL		9/2017		25/10	
Depth	Legend			STF	RATA Description				SA Depth		S & TESTS Remarks/Tests
		Clayey S is fine to	medium [TOPSOIL].	of Te	syish brown. Soft to firm, m st Pit at 0.20m, on 20/09/20 n: Roots obstructed further)17	sticit	y. Sand	0.20		TP10_0.2 PID = 0.2 ppm
SHORIN	SHORING/SUPPORT: None STABILITY:										ENERAL EMARKS
		1 A C									cavated
All dimer	isions ir	n metres	CLIENT Parliame	entar	y Services	PP Pocket Pe ↓ Insitu Var		neter Test ar Test	¥ Water L	evel	

Appendix C Percolation Tests

Job Location		Parliament		Soil conditions								
Client		Parliamentary Services		Antecedent weather			Fine					
Job No.		248221		Depth to water table			N/A - bore empty					
Test Location		BH 1-1		Depth of hole (below	/ egl)	4970	(mm)					
				Diameter of bore		60	(mm)					
TIME (24 hr clock) hh:mm:ss	Depth to water level (mm below egl)	Height above base of hole (Head) (mm)	Difference between depth readings (mm)	Time between readings (secs)	Cumulative water level rise (mm)	Time between readings (secs) ignoring refills	Cumulative time elapsed (secs)	Cumulative time elapsed (secs) (removing refills)	Cumulative water level rise (mm)	Soakage Area (m2)	Soaked Volume (L)	Soakage Rate (I/sec/m2)
12:00:00	4540	430			0	0	0	0	0			
12:00:10	4520	450	20	10	20	10	10	10	20	0.086	0.06	0.0659
12:00:20	4520	450	0	10	20	10	20	20	20	0.088	0.00	0.0000
12:00:30	4510	460	10	10	30	10	30	30	30	0.089	0.03	0.0319
12:00:40	4510	460	0	10	30	10	40	40	30	0.090	0.00	0.0000
12:00:50	4500	470	10	10	40	10	50	50	40	0.090	0.03	0.0312
12:01:00	4500	470	0	10	40	10	60	60	40	0.091	0.00	0.0000
12:02:00	4480	490	20	60	60	60	120	120	60	0.093	0.06	0.0101
12:03:00	4470	500	10	60	70	60	180	180	70	0.096	0.03	0.0049
12:04:00	4460	510	10	60	80	60	240	240	80	0.098	0.03	0.0048
12:05:00	4450	520	10	60	90	60	300	300	90	0.100	0.03	0.0047
12:10:00	4430	540	20	300	110	300	600	600	110	0.103	0.06	0.0018
12:15:00	4410	560	20	300	130	300	900	900	130	0.106	0.06	0.0017
12:20:00	4400	570	10	300	140	300	1200	1200	140	0.109	0.03	0.0008
12:30:00	4360	610	40	600	180	600	1800	1800	180	0.114	0.11	0.0016
12:40:00	4340	630	20	600	200	600	2400	2400	200	0.120	0.06	0.0007
12:50:00	4320	650	20	600	220	600	3000	3000	220	0.123	0.06	0.0007
13:00:00	4300	670	20	600	240	600	3600	3600	240	0.127	0.06	0.0007
13:30:00	4230	740	70	1800	310	1800	5400	5400	310	0.136	0.20	0.0008
14:00:00	4190	780	40	1800	350	1800	7200	7200	350	0.146	0.11	0.0004
14:30:00	4140	830	50	1800	400	1800	9000	9000	400	0.155	0.14	0.0005
15:30:00												
										AVE RATE	L/sec/m2	0.0016


L/Min/m2 0.10125



Job Location	Parliament	Soil conditions			
Client	Parliamentary Services	Antecedent weather		Fine	
Job No.	248221	Depth to water table		N/A - bore emptied	
Test Location	BH 2-1	Depth of hole (below egl)	4480	(mm)	
		Diameter of bore	60	(mm)	

TIME (24 hr clock) hh:mm:ss	Depth to water level (mm below egl)	Height above base of hole (Head) (mm)	Difference between depth readings (mm)	Time between readings (secs)	Cumulative water level rise (mm)	Time between readings (secs) ignoring refills	Cumulative time elapsed (secs)	Cumulative time elapsed (secs) (removing refills)	Cumulative water level rise (mm)	Soakage Area (m2)	Soaked Volume (L)	Soakage Rate (l/sec/m2)
40.00.00	4000	450										
12:00:00	4030	450	70	40	0	0	0	0	0	0.004	0.00	0.04000
12:00:10	3960	520	70	10	70	10	10	10	70	0.094	0.20	0.21000
12:00:20	3940	540	20	10	90	10	20	20	90	0.103	0.06	0.05505
<u>12:00:30</u> 12:00:40	3920 3900	560	20 20	10	110 130	10	30 40	30	110 130	0.106	0.06	0.05310
12:00:40	3900	580 600	20	10 10	150	<u> </u>	50	40 50	150	0.110	0.06	0.05128
12:00:50	3870	610	20 10	10	150	10	60	<u> </u>	150	0.114	0.00	0.02419
12:01:00	3810	670	60	60	220	60	120	120	220	0.117	0.03	0.02419
12:03:00	3730	750	80	60	300	60	120	120	300	0.123	0.17	0.02250
12:03:00	3660	820	70	60	370	60	240	240	370	0.157	0.20	0.02188
12:05:00	3610	870	50	60	420	60	300	300	420	0.162	0.20	0.02160
12:10:00	3570	910	40	300	460	300	600	600	460	0.171	0.11	0.00221
12:15:00	3460	1020	10	300	570	300	900	900	570	0.185	0.31	0.00561
12:20:00	3380	1100	80	300	650	300	1200	1200	650	0.203	0.23	0.00372
12:30:00	3280	1200	100	600	750	600	1800	1800	750	0.220	0.28	0.00215
12:40:00	3180	1300	100	600	850	600	2400	2400	850	0.238	0.28	0.00198
12:50:00	3120	1360	60	600	910	600	3000	3000	910	0.254	0.17	0.00112
13:00:00	3050	1430	70	600	980	600	3600	3600	980	0.266	0.20	0.00124
13:30:00	2920	1560	130	1800	1110	1800	5400	5400	1110	0.285	0.37	0.00072
14:00:00	2870	1610	50	1800	1160	1800	7200	7200	1160	0.302	0.14	0.00026
14:30:00	2860	1620	10	1800	1170	1800	9000	9000	1170	0.307	0.03	0.00005
14:45:00	2860	1620										
										AVE RATE	L/sec/m2	0.00528
											L/Min/m2	0.31691

Appendix D Field Monitoring Sheets

al weilid: BH			CC		NAPL Depth:	Project N	umber: 248	8221 AMENT	RECORDING SHEE	Due to stow recharge rate. Sampled below	Multionoba No-	Fine, Dry Sampling Method: Peri Pump
		<u>,</u>	· · · · · · · · · · · · · · · · · · ·				DTW M		appropriate): Ground Level / Top Hat /			
	s epplicable		T	T			Time (minutes)	<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		Groundwater Comments: (colour, sediment, odour etc.)
010 YSI	New YSt	0	5	10	15	20	25	30			Racharo	e rate possibly faster today
°C	°C	15:1	15.0	14.8	14.7	14.9	14-8	14.7				ground saturation (recent
µS/cm ^c	D0%	90.0	73.7	72.4	71.6	71.0	70.4	68.0			rounfa	
µ\$/cm	D0 mg/t	9.03	7.45	7.33	7.27	7.17	7.09	6.93				removed during plurging:
,D0%	μS/cm ^c	498.0	478.3	488.9	494.0	498.9	511-1	517.3				CUIDACO ORAUS PEXERS
•BO·mg//	uS/cm											Containers Collected:
pH	рH			7.26	··· · · · · · · · · · · · · · · · · ·	7.21	7.20	7.14			Number:	Тура:
ÖRP	ÓRP	120.4	99.0	95.0	93.4	92.8	93.1	94.3				1 Litre Glass 40mi Vial
D.	TW							2.80m				1 Litre Plastic
Арргох. Р	ump Speed											
	is Well Cove	r Dameged?	Cover Bolb	s Present?	Rubber Sea	al Present?	Water Ins	side Cover?	Bung Present?	Surrounding Condition (e.g. Sunken? etc.)	Other Comm	ents (e.g. Maintenance Required? Obstruction in Pipe?)
Well Condition:	N	J	Ň	/	N		~	/		FLUSH W/GRND		as above, for precantion.
0												
Well ID; 54	12-2	Time:	2:50) pm	NAPL Depth:		DTW:	2-85m		S2m Sampled A	t 4.00m	Sampling Method: Paris Pump
		Time:	2:50) pm	NAPL Depth:		DTW Me		DYB: 4 -	S2m Sampled A	± 4.00m	Sampling Method: Pari. Pump
	Bpplicable	Time:	2:50		1		DTW Me Time (minutes)	easured From (delete as		S2m Sampled A		Sampling Method: Pari. Pump Groundwater Comments: (colour, sediment, odour etc.)
Delete as	applicable	0	5	10	15	20	DTW Me Time (minutes) 25			S2m Sampled A		Sampling Method: Pari. Pump Groundwater Comments: (colour, sediment, odour etc.)
Delete as Old YSI	epplicable New YSt	° 15.3	₅ 1S·4	10 15 · 0	15 15.1	15.3	DTW Me Time (minutes) 25 15.5	easured From (delete as		S2m Sampled A	Issues pump d	Groundwater Comments: (colour, sediment, odour etc.) with continuity of Flow - rew air 3 times, but
Delete as Old YSI C	spplicable New YSt C D0%	° 15.3 58.2	₅ 15.4 62.9	10 15.0 68.2	15 15.1 63.4	15.3	DTW Me Time (minutes) 25 15.5 68.6	easured From (delete as		S2m Sampled A	Issues pump d	Groundwater Comments: (colour, sediment, odour etc.) with continuity of Flow - rew air 3 times, but
Delete as Old YSI °C µS/cm ^c	epplicable New YSt 'C D0% D0 mg/l	0 15.3 58.2 5.72	5 15.4 62.9 6.29	10 15.0 68.2 6.82	15 15.1 63.4 6.37	15-3 59.9 5.99	DTW Me Time (minutes) 25 15.5 68.6 6.85	easured From (delete as		S2m Sampled A	Issues pump d	Sampling Method: Peri. PUMP Groundwater Comments: (colour, sediment, odour etc.) with continuity of Flow - rew air 3 times, but lished. Find readings not ensure samples could be taken performed during purples:
Delete as Old YSJ 'C µS/cm ^c µS/cm D0%	epplicable New YSI C D0% D3 mg/l µS/cm ^o	° 15.3 58.2	5 15.4 62.9 6.29	10 15.0 68.2 6.82	15 15.1 63.4 6.37	15-3 59.9 5.99	DTW Me Time (minutes) 25 15.5 68.6 6.85	easured From (delete as		S2m Sampled A	Issues pump d	Sampling Method: Peri. Pump Groundwater Comments: (colour, sediment, odour etc.) with continuity of Flow - rew air 3 times, but lished. Fince readings not ensure samples could be taken removed during purging:
Delete as Old YSI C µS/cm ^c µS/cm	epplicable New YSt TC D0% D0 mg/l µS/cm ^c µ8/om	0 15.3 58.2 5.72 590.1	5 15.4 62.9 6.29 564.0	10 15 .0 68.2 6.82 512.4	15.1 15.1 63.4 6.37 509.7	15.3 59.9 5.99 508.5	DTW Me Time (minutes) 25 15 . S 68 . 6 6 . 8 . 5 555 . 4	easured From (delete as		S2m Sampled A	Issues pump d reestab. culler co Volume of water	Sampling Method: Peri. PUMP Groundwater Comments: (colour, sediment, odour etc.) with continuity of Flow - rew air 3 times, but lished. Find readings not ensue samples could be taken perioved during purging:
Delete as Old YSI C µS/cm ^c µS/cm D0%	epplicable New YSI C D0% D3 mg/1 µS/cm ^o pH	° 15.3 58.2 5.72 590.1 6.68	5 15.4 62.9 6.29 564.0 6.76	10 15.0 68.2 6.82 512.4 6.85	15.1 15.1 6.34 6.37 509.7 6.81	15.3 59.9 5.99 508.5 6.75	DTW Me Time (minutes) 25 15.5 68.6 6.85 555.4 6.70	easured From (delete as		S2m Sampled A	Issues pump d	Sampling Method: Peri. PUMP Groundwater Comments: (colour, sediment, odour etc.) with continuity of Flow - rew air 3 times, but Ished. Find readings not enoved during purging: Containers Collected: Type:
Delete as Old YSJ 'C μS/cm ^c μS/cm D0% D0mg/l - pH ORP	spplicable New YSt D0% D0 mg/ µS/cm ^o µS/cm ^o pH ORP	0 15.3 58.2 5.72 590.1	5 15.4 62.9 6.29 564.0	10 15 .0 68.2 6.82 512.4	15.1 15.1 63.4 6.37 509.7	15.3 59.9 5.99 508.5	DTW Me Time (minutas) 25 15.5 68.6 6.85 555.4 6.70 0.3	30 30		S2m Sampled A	Issues pump d reestab. culler co Volume of water	Sampling Method: Peri. PUMP Groundwater Comments: (colour, sediment, odour etc.) with continuity of Flow - rew air 3 times, but Ished. Find readings not enoved during purging: Containers Collected: Type:
Delete as Old YSJ 'C μS/cm ^c μS/cm D0%	epplicable New YSI C D0% D3 mg/1 µS/cm ⁰ pH 0RP	° 15.3 58.2 5.72 590.1 6.68	5 15.4 62.9 6.29 564.0 6.76	10 15.0 68.2 6.82 512.4 6.85	15.1 15.1 6.34 6.37 509.7 6.81	15.3 59.9 5.99 508.5 6.75	DTW Me Time (minutes) 25 15.5 68.6 6.85 555.4 6.70 0.3 3.16 m	30 30		S2m Sampled A	Issues pump d reestab. culler co Volume of water	Sampling Method: Peri. PUMP Groundwater Comments: (colour, sediment, odour etc.) with continuity of Flow - rew air 3 times, but Ished. Find readings not enoved during purging: Containers Collected: Type:
Delete as Old YSJ 'C μS/cm ^c μS/cm D0%	spplicable New YSt D0% D0 mg/ µS/cm ^o µS/cm ^o pH ORP	° 15.3 58.2 5.72 590.1 6.68	5 15.4 62.9 6.29 564.0 6.76	10 15.0 68.2 6.82 512.4 6.85	15.1 15.1 6.34 6.37 509.7 6.81	15.3 59.9 5.99 508.5 6.75	DTW Me Time (minutas) 25 15.5 68.6 6.85 555.4 6.70 0.3	30 30		S2m Sampled A	Issues pump d reestab. culler co Volume of water	Sampling Method: Peri. Pump Groundwater Comments: (colour, sediment, odour etc.) with continuity of Flow - rew air 3 times, but Ished. Fince readings not enoved during purging: Containers Collected:
Delete as Old YSJ 'C μS/cm ^c μS/cm D0%	epplicable New YSI C D0% D3 mg/1 µS/cm ⁰ pH 0RP	0 15.3 58.2 5.72 590.1 6.68 -15.2	5 15.4 62.9 6.29 564.0 6.76	10 15.0 68.2 6.82 512.4 6.85 1.3	15.1 15.1 6.34 6.37 509.7 6.81	15.3 59.9 5.99 508.5 6.75 11.2	DTW Me Time (minutes) 25 15.5 68.6 6.85 555.4 6.70 0.3 3.16 M 3.16 M	30 30	appropriate): Ground Level / Top Hat /	S2m Sampled A	Issues pump cl reestab toluer co Volume of water u Number:	Sampling Method: Peri. PUMP Groundwater Comments: (colour, sediment, odour etc.) with continuity of Flow - rew air 3 times, but Ished. Find readings not enous samples could be taken perioved during purging:

•	k)		15						2					59.)	
	Ur	'e	CO	h		LOW	/-FLOW M			ING SHEE	т		Monitoring Engineer	SMA/NK	<u>(</u>
						Project I	wimber: 24	+8221					Task Manager:		
						Site:	PARLI	AMENI	<u></u>				Weather: • F	ine, dry	
	•					Date:	12/19						Multiprobe No;	5	
Well ID;	BH 1-	Time:	2:40 F	na /	NAPL Depth:		DTW:	3.05		MB: 4.	97m	Sampled /	# 4.00	Sampling Method:	Peri Pump
Delete a	s epplicable			<u> </u>				easured From (delete	as appropriate). aro	und Level / Top Hat /	Well Pipe				
Old YSI	New YSI	0	5	10	15	20	Time (minutes)	30						Groundwater Comments: (colour, sediment, odour etc.)	
'C		ii n	100/1		1		23	30					Starty 0	a down with 20 A despise with poster not taken to enn	who - flow
μS/cm°	DQ%	16.0	18.4	15.3	15.5/	15.8		-/	JA JA	MPUN	6 ABAN	DONED	readings	not taken to err	ve sampler
µS/cm	DC mg/l	77.6	10.2	70.4	69.2	71,4		/	- FU	an ce	ASEV		could be	tolier.	p p c
D0%	μS/cm ^c	7.65	7.01	7.04	6,92	7.1	\vdash				ELY @	20-	Volume of water ren	noved during purging:	
D0 mg/l	µS/cm	601	842	855/	852	849	-/-		25	MINS			-1-1C +	HM GRAB	SAMPLES
> pH	pH	12 00	7 -11	7.54	7 51		/			1.	NP RUN			Containers Collected: T	AVEN WITH
ORP	ORP	7.59	La deservation of the second s			7,55	/	·	////////	HIGI	H SPEED	BUT	Number:	Type: 1 Litra Glass	BAILER
	/	14.2	24.4	33.0	37.5	38.4					CLENT TO			40mi Vial	LAB
			<u> </u>				3,66		/	HEAD DO	WN - GW	FLONTOO N BETWEE	Law/		FILTRATION
Approx.	ump Speed			L			· ·			GRANS T	DO HIGH F	OR PUMP			REQ'O
Well Condition:	Is Well Cove	er Damaged?	Cover Bolb	s Present?	Rubber Sea	Present?	Water Ins	ide Cover?	Bung F	resent?	Surrounding Condition	n (e.g. Sunken? etc.)	Other Commen	ts (c.g. Maintenance Required? Obstr	uction in Pipe?)
Well Containon:	N	J	Y	/	N			/	Y		FLWH W/	GRND	······································		
Well ID;	BILI-	- Z Time:	3:15		NAPL Depth:	_	, 	4,09	· · · · · ·		,15	Sampled A	t 4,5		*
									as appropriate): Grou	ind Level / Top Hat / 1		SEMIDED		Sampling Method:	
Delete as	epplicable						Time (minutes)							Groundwater Comments: (colour, sadiment, odour etc.)	
Old YSI	New YSI	0	5	10	15	20	25	30						(coord, sediment, oddar etc.)	
'C	°C			1110	AFTI	CIEN		14	0 50	2 70			•		
µS/cm ^c	D0%			102		$\overline{\mathbf{D}}$		(\mathcal{F})	R FOI	~ 30	PMIN	S-OF-			-
µS/am	D0 mg/t			PAR	AMET	ERN	NEAN	ARFM	ENT				•		
00%	µ\$/cm ^c			1									Volume of water rem	loved during purgling:	
D0 mg/l	µS/cm				74	WFL	pn sa	MPLE.	5 OBT	AIME	DIRE	CILY		Containers Collected:	· · · · · · · · · · · · · · · · · · ·
pH	pH						+C+				LEST		Number:	Type:	
ORP	ORP						BAILE	REAL	2 NUAT	DIENT		MCN.		rype: 1 Litre Glass 40ml Viat	
D	TW						RID	b(N) =	i AR	EII T	PATION			40m vie 1Utre Plastic	
Арргох, Р	ump Speed		· · · · · · · · · · · · · · · · · · ·		M	REQ		rui -			~11/0	·	A		
	he Ideall A	r flomo and?			······			L		· · · · · · · · · · · · · · · · · · ·			<u></u>		
Well Condition:	is Well Cove		Cover Bolts	7	Rubber Seal	Present?	Water Insl	de Covar?	Bung Pi	-	Surrounding Condition	· · · · · · · · · · · · · · · · · · ·	Other Comment	s (e.g. Maintenance Reculred? Obstr	uction in Phpe?)
L	N	J	L >		N		ΥΥ		Y		FLUSH WI	GRUD			

٠

-

.

NAPL: Non-Aquecus Phase Liquid DTW: Depth To Water DTB: Depth To Bese

		Aurecon Bulk Soil Gas Monitoring Form														
	ure trap p		~		L B	H1-2										
-	PARLEAM		1	Well ID:	(SOUTHE GARDE	N WELL	Baron	netric Pr	ressure:	1009	1 mb					
lob No:	2482	21				ERCAST	•		ressure:		i nuo					
	PARLIM				IAN WAG						1		0			
Client:	Marra S				Enveo GAS			Pea	k Flow:	0.2	21/4		Flow		011	1,
	9/10/17	1		SMG	AULEY	N KING	•				1,	•) s :		14
Date:	25/11/2016		Op	erative:	LBeime			Averag	e Flow:	0.15	5.1/h		50	-	0.21	h
me (sec	cs)	0	10	20	30	60	90	120	150	180	210	240			(Min 02)	
CH4	(% v/v)	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	·			(10111 02)	
CO2	(% v/v)	0.1	3.8	3.3	2.8	1.9	1.1	1.0	0.6	0.5	0.4	0.4	0.0	-		
02	(% v/v)	21.5	17.0	16.6	17.1	18.5	19.2			20.5	20.7	26.5	20.8			
со	ppm	2	2	2	2	2	-	2	2	1	1	١	1			
H2S	ppm	О	0	0	0	0	0	Ö	0	0	0	0	0			
DTP:	pen			DTD.		C	0.3		l	0.3			0.24	1		
		DTW:		DTB:		Grou	ind con	altions:					·			

Flow fresh air through gas analyser between each well until **concentrations return to normal level** Measure depths from ground level. If not possible ensure you note where recorded from.

Final PID: 0-12 0-2

Aurecon Bulk Soil Gas Monitoring Form Moisture trap present? NotTheRMMOST Site: PARLAMENT Well ID: BH2-1 Barometric Pressure: 1009 mb Iob No: 248 221 Weather: Realtive Pressure: 0.144													
Client: Marra SERVICES Unit: Envco GA5000 Peak Flow: 0.2 1/4 Date: 25/11/2017 Operative: 1-Beirne Average Flow: 0.2 1/4													
me (secs)	0	10	20	30	60	90	120	150	180	210	240	270	PEAK (Min 02)
CH4 (% v/v)	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
CO2 (% v/v)	0.1	0.1	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
O2 (% v/v)	21.2	21.6	21.3	21.2	20.8	20.5	20.8	20.8	20.8	20·8		20.8	20.8
CO ppm		2	2	2	2	2	2	2	2	Z	2	2	2
H2S ppm	O	0	0	0	0	Ø	0	0	0	0	0	0	
PID PPM DTP:	DTW:		DTB:	•	Grou	o.3 Ind con	ditions:	0.44			0. <u>2</u> .C		

Flow fresh air through gas analyser between each well until concentrations return to normal level Measure depths from ground level. If not possible ensure you note where recorded from.

	ure trap p PARIIA	MENT]	LA WOTHE	A)-1 RAIMOST		as Moni							
	Reynolds P		-	Well ID:	GARDEN	WELL)	Baron	netric P	ressure:	100	9 mb	-			
lob No	: 24825	21	W	eather:	Rain ÓV	GRCAST	- Re	altive Pı	ressure:	_0.1	ONS				
PARLIAMENTARY Weather: Reim OVERCAST Realtive Pressure: 0.10 mb PARLIAMENTARY VAN WALT Client: Marro SERVICES Unit: Enveo GA5000 9/10/17 SMCAULEY, NKING															
$9 10 17$ $5mAureY, NKING$ $30 \le 0.31/h$ Date: $25/11/2016$ Operative: $48ime$ Average Flow: $0.31/h$ $30 \le 0.31/h$ $50 \le 0.31/h$															
me (se		0	10	20	30	60	90	120	150	180	210	240		PEAK (Min 02)	2 1
CH4	(% v/v)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0	0.0	(
CO2	(% v/v)	0.8	0.7	0.7	0.7	6.7	0.7	0.7	0.7	0.6	0.6	0.6	0.5		1
02	(% v/v)	20.4	20.2	20.1	20.1	20.1	20.1	20.2	20.2	20.3	20.3	20.4	20.5		
СО	ppm	1	1	1	1	1		1	1	1	1)	1		
H2S	ppm	0	0	0	0	0	0	0	0	0	0	0	0	├──── │	
DTP:	PPM	DTW:		DTB:		0.27 Grou	ind cond	ditions:	0.26		0.24				

Flow fresh air through gas analyser between each well until concentrations return to normal level Measure depths from ground level. If not possible ensure you note where recorded from.

 \mathcal{T}

Moisture (PAR Site: <u>Rey</u>	RLIAM	ENT		Vell ID:	(Southe	12-2 RNMOST			toring For		7 mb						
lob No: 2	482	21	W	eather:	Rain OV	ERCASI	RCAST Realtive Pressure: 0.10 mb flow										
Iob No: 248221Weather: Rain OVERCASTRealtive Pressure: 0.10 mbflowPARLIMENTARYVAN WALT30s - 0.2 1/hClient: Marrar SERVICESUnit: Enzero GA5000Peak Flow: 0.3 1/h												0.6					
Date: <u>-25/</u>	10/17 11/20 16		Оре	র erative:	MAULE L.Beir ne	7, NK	ING	Averag	e Flow:	0.25	1/4		605 7 805	- 0.3 1/L - 0.3 1/L			
me (secs)		0	10	20	30	60	90	120	150	180	210	240	270	PEAK (Min 02)			
	v/v)	0.0	0.0	0.0	0.0	0.0	60	0.0	0.0	0.0	0.0	0.0	0.0				
	v/v)	0.1	0.5	0.5	£.0	0.3	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1			
02 (%	v/v)	21.0	20.2	19.9	20-1	20.4	20-7	20.8	20.8	20.7	21.1	21.0	20.8	20.8			
СО рри	m	1	2	2	2	2	2	2	1	1	1	1	1	2			
H2S ppi		0	0	0	0	0	0	0	0	0	0	0	0	-			
PID PPN DTP:		DTW:		DTB:		Grou	1.2 Ind con	ditions:	0.7	l.		1	0.37				

Flow fresh air through gas analyser between each well until concentrations return to normal level Measure depths from ground level. If not possible ensure you note where recorded from.

Final PID : 0.48

Appendix E Screening Tables

New Zealand Parliament - Ministerial and New Members Development Detailed Site Investigation Table F1 - Soil Analytical Results

Laboratory Reference				Screening Criteria		17-24091-1	17-24091-2	17-24091-3	17-24091-4	17-24091-5	17-24091-6	17-24091-7	17-24091-8	17-24091-9	17-24091-10
Sample ID			NEC	MfE Tier 1 All	Dealerround	TP1	TP2	TP3	TP4	TP5	TP6	TP7	TP8	TP9	TP10
Sample Date			NES Commerical /	Pathways - Commerical,	Background Max Value, Sand	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Depth	Units	LOR	Industrial (1)	Sand, < 1 m (2)	(3)	0.4	0.15	0.4	0.15	0.5	0.25	0.45	0.2	0.3	0.2
Arsenic	mg/kg dry wt	0.125	70		7	8	12.3	8.47	9.49	8.73	10.6	11.9	7.1	3.16	3.58
Beryllium	mg/kg dry wt	0.013				1.12	0.99	1.19	1.41	1.21	1.57	1.36	1.09	1.08	0.49
Boron	mg/kg dry wt	1.25	>10,000		2.1	3.37	3.52	3.18	3.46	4.05	4.03	3.47	3.06	<1.25	2.63
Cadmium	mg/kg dry wt	0.005	1,300		0.1	0.094	0.078	0.061	0.05	0.12	0.055	0.1	0.042	0.029	0.15
Chromium	mg/kg dry wt	0.125	6,300		12	33.2	17.4	19	20.6	18.5	20.8	19.3	17.3	16.3	15
Copper	mg/kg dry wt	0.075	>10,000		10	19.4	20.2	19.9	22.1	25.9	22.6	20.3	16.3	8.27	12.7
Lead	mg/kg dry wt	0.05	3,300		180	116	26.9	26.9	23.4	399	24.1	45.3	18.1	15.2	21.5
Mercury	mg/kg dry wt	0.025	4,200		0.1	0.11	0.077	0.055	0.048	0.21	0.052	0.082	0.052	0.063	0.095
Nickel	mg/kg dry wt	0.05			9	19.9	17.6	16.7	19.4	17.2	19.6	17.4	15.7	9.92	9.04
Zinc	mg/kg dry wt	0.05			79	108	78	83.6	81.1	186	82.6	106	68.5	45.9	50.5
C7-C9	mg/kg dry wt	10		120		<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
C10-C14	mg/kg dry wt	15		1500		<15	<15	<15	<15	<15	<15	<15	<15	<15	<15
C15-C36	mg/kg dry wt	25		NA		<25	<25	<25	<25	<25	26	<25	<25	<25	48
C7-C36 (Total)	mg/kg dry wt	50			110	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Benzene	mg/kg	0.05		3		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05
Ethylbenzene	mg/kg	0.05		180		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
Toluene	mg/kg	0.05		94		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
m,p-xylene	mg/kg	0.05		150		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
o-xylene	mg/kg	0.05		150		< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
1-Methylnaphthalene	mg/kg	0.01				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01
2-Methylnaphthalene	mg/kg	0.01				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	<0.01	< 0.01	< 0.01
Acenaphthene	mg/kg	0.01				< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	mg/kg	0.01				< 0.01	< 0.01	0.02	< 0.01	0.05	< 0.01	0.09	<0.01	< 0.01	< 0.01
Anthracene	mg/kg	0.01			0.01	0.01	< 0.01	0.01	< 0.01	0.04	< 0.01	0.09	<0.01	< 0.01	< 0.01
Benz[a]anthracene	mg/kg	0.02				0.06	< 0.02	0.07	< 0.02	0.27	< 0.02	0.29	<0.02	<0.02	<0.02
Benzo[a]pyrene	mg/kg	0.01			0.08	0.07	<0.01	0.09	< 0.01	0.38	< 0.01	0.32	0.02	<0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg	0.02				0.08	< 0.02	0.12	<0.02	0.4	< 0.02	0.36	0.03	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg	0.02				0.07	< 0.02	0.1	< 0.02	0.34	0.02	0.25	0.03	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg	0.01				0.03	< 0.01	0.04	< 0.01	0.17	< 0.01	0.13	<0.01	< 0.01	< 0.01
Chrysene	mg/kg	0.01				0.08	<0.01	0.08	< 0.01	0.29	< 0.01	0.28	0.02	<0.01	<0.01
Dibenz(a,h)anthracene	mg/kg	0.01				<0.01	<0.01	0.02	< 0.01	0.06	<0.01	0.05	<0.01	<0.01	<0.01
Fluoranthene	mg/kg	0.02				0.16	<0.02	0.12	<0.02	0.6	<0.02	0.67	0.04	<0.02	<0.02
Fluorene	mg/kg	0.01			0.14	< 0.01	<0.01	< 0.01	< 0.01	0.01	<0.01	0.03	< 0.01	< 0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg	0.01				0.06	<0.01	0.09	<0.01	0.34	<0.01	0.26	0.02	<0.01	<0.01
Naphthalene	mg/kg	0.01		190	0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01
Phenanthrene	mg/kg	0.01			0.07	0.07	<0.01	0.04	< 0.01	0.22	<0.01	0.53	0.02	< 0.01	<0.01
Pyrene	mg/kg	0.02		NL	0.12	0.16	<0.02	0.14	<0.02	0.69	<0.02	0.67	0.05	<0.02	<0.02
Benzo[a]pyrene TEQ	mg/kg	0.01	35	11		0.09	ND	0.14	ND	0.56	ND	0.48	0.02	ND	ND
	0, 0	-	-									-			

LOR - Laboratory Limit of Reporting

NL - Contaminant not limiting, as estimated health-based critirion is significantly hire than that likley to be encountered on site

TEQ - Toxicity equivilent

ND - Non-detect calculated value is less than limit of reporting for all calculation inputs

NA - Not analysed

Italics indicate concentration above URS 2003 Background Soil Conentrations

(1) MfE, (2011), Method for Deriving Standard for Contaminants in Soil to Protect Human Health, Table ES1 and ES2

(2) MfE, 1999 (Revised 2011), Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand, Module 4 – Tier 1 soil acceptance criteria, Table 4.11

(3) URS, (2003), Determination of Common Pollutant Background Soil Concentrations for the Wellington Region, Table ES-1

New Zealand Parliament - Ministerial and New Members Development Detailed Site Investigation Table F1 - Soil Analytical Results

Laboratory Reference			Screening Criteria	_	17-24091-11	17-24091-12	17-24091-13	17-24091-14	17-24091-15	17-24091-16	17-24091-17	17-24091-18	17-24091-19	17-24091-20	17-24091-21	17-24091-22
Sample ID		N/50	MfE Tier 1 All		BH1/1	BH1/1	BH1/1	BH1/1	BH1/1	BH1/1	BH1/2	BH1/2	BH1/2	BH1/2	BH1/2	BH2/1
Sample Date		NES Commerical /	Pathways -	Background Max Value, Sand	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Depth	Units LOR	Industrial (1)	Commerical, Sand, < 1 m (2)	(3)	1.75	3.5	4.4	5.1	5.7	6.9	2.1	3.1	3.6	4.7	5.6	2.4
Arsenic	mg/kg dry wt 0.125	70		7	4.25	2.23	1.73	1.67	2.7	2.12	2.33	1.71	0.447	3.05	4.97	3.42
Beryllium	mg/kg dry wt 0.013				1.2	1	1.01	1.34	1.07	1.28	1.11	0.36	0.66	0.87	1.31	0.98
Boron	mg/kg dry wt 1.25	>10,000		2.1	1.46	<1.25	<1.25	<1.25	<1.25	<1.25	1.43	<1.25	1.33	<1.25	<1.25	1.64
Cadmium	mg/kg dry wt 0.005	1,300		0.1	0.037	0.024	0.014	0.022	0.016	0.039	0.024	0.008	0.02	0.009	0.008	0.026
Chromium	mg/kg dry wt 0.125	6,300		12	20.1	16.8	19.3	22	22.5	26.6	21.2	25.5	28.5	22.3	23.5	19.5
Copper	mg/kg dry wt 0.075	>10,000		10	14	8.72	9.69	11.6	9.75	10.9	10.8	7.96	23.1	15.3	17.5	16
Lead	mg/kg dry wt 0.05	3,300		180	14.9	12.1	14.6	19	14.3	16.4	14.4	19.2	26	19.6	22.6	32.9
Mercury	mg/kg dry wt 0.025	4,200		0.1	0.046	<0.025	<0.025	0.026	<0.025	0.026	<0.025	0.044	<0.025	<0.025	<0.025	0.14
Nickel	mg/kg dry wt 0.05			9	12.9	11.4	12.1	12.5	12.2	14.7	15	9.64	18.9	14.2	14.9	11.4
Zinc	mg/kg dry wt 0.05			79	54.6	48.2	52.4	56.5	55.4	63	56.3	19.5	63.9	52.3	56.6	59.9
C7-C9	mg/kg dry wt 10		120		NA											
C10-C14	mg/kg dry wt 15		1500		NA											
C15-C36	mg/kg dry wt 25		NA		NA											
C7-C36 (Total)	mg/kg dry wt 50			110	NA											
Benzene	mg/kg 0.05		3		NA											
Ethylbenzene	mg/kg 0.05		180		NA											
Toluene	mg/kg 0.05		94		NA											
m,p-xylene	mg/kg 0.05		150		NA											
o-xylene	mg/kg 0.05		150		NA											
1-Methylnaphthalene	mg/kg 0.01				<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01
2-Methylnaphthalene	mg/kg 0.01				<0.01	<0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg 0.01				<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg 0.01				<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg 0.01			0.01	<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg 0.02				<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene	mg/kg 0.01			0.08	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg 0.02				<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg 0.02				<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg 0.01				<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg 0.01				<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	0.01
Dibenz(a,h)anthracene	mg/kg 0.01				<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg 0.02				<0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	<0.02	<0.02	<0.02	<0.02
Fluorene	mg/kg 0.01			0.14	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg 0.01				<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg 0.01		190	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg 0.01			0.07	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	mg/kg 0.02		NL	0.12	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02
Benzo[a]pyrene TEQ	mg/kg 0.01	35	11		ND											

LOR - Laboratory Limit of Reporting

NL - Contaminant not limiting, as estimated health-based critirion is significantly hire than that likley to be encour

TEQ - Toxicity equivilent

ND - Non-detect calculated value is less than limit of reporting for all calculation inputs

NA - Not analysed

Italics indicate concentration above URS 2003 Background Soil Conentrations

(1) MfE, (2011), Method for Deriving Standard for Contaminants in Soil to Protect Human Health, Table ES1 and E

(2) MfE, 1999 (Revised 2011), Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Site:

(3) URS, (2003), Determination of Common Pollutant Background Soil Concentrations for the Wellington Region, 1

New Zealand Parliament - Ministerial and New Members Development Detailed Site Investigation Table F1 - Soil Analytical Results

Laboratory Reference				Screening Criteria		17-24091-23	17-24091-24	17-24091-25	17-24091-26	17-24091-27	17-24091-28	17-24091-29	17-24091-30	17-24091-31	17-24091-32	17-24091-33
Sample ID			1150	MfE Tier 1 All		BH2/1	BH2/1	BH2/1	BH2/1	BH2/2						
Sample Date			NES	Pathways -	Background	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
			Commerical /	Commerical,	Max Value, Sand								. –			
Depth	Units	LOR	Industrial (1)	Sand, < 1 m (2)	(3)	3.3	3.5	4.4	5.5	2.1	2.8	3.9	4.7	5.3	7.8	8.4
Arsenic	mg/kg dry wt		70		7	0.828	2.52	3.15	4.62	1.98	3.04	0.405	0.827	0.558	1.29	1.89
Beryllium	mg/kg dry wt	0.013				0.32	1.33	2.03	1.7	0.88	1.26	1.19	0.77	1.15	0.99	1.27
Boron	mg/kg dry wt	1.25	>10,000		2.1	<1.25	1.43	<1.25	<1.25	<1.25	<1.25	<1.25	<1.25	<1.25	<1.25	<1.25
Cadmium	mg/kg dry wt		1,300		0.1	0.005	0.06	0.025	0.019	0.006	0.009	0.006	0.005	0.01	0.017	0.022
Chromium	mg/kg dry wt	0.125	6,300		12	10.6	15.3	18.3	22.4	14.2	23.8	15.1	14.5	18.8	18.8	21.7
Copper	mg/kg dry wt	0.075	>10,000		10	1.96	10.5	10.7	14.2	6.33	7.8	9.84	8.32	12.8	11.4	10.5
Lead	mg/kg dry wt	0.05	3,300		180	8.71	10.4	14.8	15.1	13.7	16.6	13.2	12.3	13.9	16.2	15.4
Mercury	mg/kg dry wt	0.025	4,200		0.1	0.041	0.046	0.028	<0.025	<0.025	0.025	<0.025	<0.025	<0.025	<0.025	<0.025
Nickel	mg/kg dry wt	0.05			9	5.33	10.5	11.6	13.3	7.79	7.75	10.4	8.76	11	9.62	12.1
Zinc	mg/kg dry wt	0.05			79	28.6	48.2	53.7	63.8	34.8	41.8	48.5	38.3	51.6	55.8	59.9
C7-C9	mg/kg dry wt	10		120		NA	NA	<10	NA							
C10-C14	mg/kg dry wt	15		1500		NA	NA	<15	NA							
C15-C36	mg/kg dry wt	25		NA		NA	NA	<25	NA							
C7-C36 (Total)	mg/kg dry wt	50			110	NA	NA	<50	NA							
Benzene	mg/kg	0.05		3		NA	NA	< 0.05	NA							
Ethylbenzene		0.05		180		NA	NA	< 0.05	NA							
Toluene		0.05		94		NA	NA	< 0.05	NA							
m,p-xylene		0.05		450		NA	NA	< 0.05	NA							
o-xylene	mg/kg	0.05		150		NA	NA	< 0.05	NA							
1-Methylnaphthalene	mg/kg	0.01				<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg	0.01				<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	< 0.01	<0.01
Acenaphthene	mg/kg	0.01				<0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	<0.01
Acenaphthylene	mg/kg	0.01				<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg	0.01			0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg	0.02				<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene	mg/kg	0.01			0.08	<0.01	< 0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg	0.02				<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg	0.02				<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg	0.01				<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg	0.01				<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	mg/kg	0.01				<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg	0.02				<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Fluorene	mg/kg	0.01			0.14	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg	0.01				<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg	0.01		190	0.01	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg	0.01			0.07	<0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	mg/kg	0.02		NL	0.12	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene TEQ	mg/kg	0.01	35	11		ND										

LOR - Laboratory Limit of Reporting

NL - Contaminant not limiting, as estimated health-based critirion is significantly hire than that likley to be encour

TEQ - Toxicity equivilent

ND - Non-detect calculated value is less than limit of reporting for all calculation inputs

NA - Not analysed

Italics indicate concentration above URS 2003 Background Soil Conentrations

(1) MfE, (2011), Method for Deriving Standard for Contaminants in Soil to Protect Human Health, Table ES1 and E

(2) MfE, 1999 (Revised 2011), Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Site:

(3) URS, (2003), Determination of Common Pollutant Background Soil Concentrations for the Wellington Region, 1

New Zealand Parliament - Ministerial and New Members Development Detailed Site Investigation Table F2 - Groundwater Analytical Results

			1					-	-	-
Laboratory Reference				Screening Crite	eria		17-25011	17-25011	17-25011	17-25011
Sample ID			ANZECC	ANZECC		Hydrocarbon,	BH1-1	BH1-2	BH2-1	BH2-2
Sample Date			95% Protection of	95% Protection of	MoH Drinking	Inhalation, 2 m,	12/10/2017	12/10/2017	12/10/2017	12/10/2017
	Units	LOR	Marine Species (1)	Freshwater Species (1)	Water (2)	Sand, Indoor (3)				
	onits	LOIN	Warme Species (1)			Sund, muser (S)				
Arsenic	g/m3	0.0005	ID	0.013	0.01		0.0014	0.0028	0.0006	<0.0005
Beryllium	g/m3	0.00001	ID	ID			<0.00001	<0.00001	<0.00001	<0.0001
Boron	g/m3	0.005	ID	0.370	1.4		0.148	0.185	0.068	0.069
Cadmium	g/m3	0.00001	0.0055	0.0002	0.004		<0.00001	<0.00001	0.00002	<0.0001
Chromium	g/m3	0.0002	0.0044	0.0010	0.05		<0.0002	<0.0002	<0.0002	<0.0002
Copper	g/m3	0.0002	0.0013	0.0014	2		0.0016	0.0004	0.0033	0.0007
Lead	g/m3	0.00005	0.0044	0.0034	0.01		<0.00005	<0.00005	<0.00005	<0.00005
Mercury	g/m3	0.0001	0.0004	0.0006	0.007		<0.0001	<0.0001	<0.0001	<0.0001
Nickel	g/m3	0.0002	0.070	0.011	0.08		0.0024	0.0027	0.0029	0.003
Zinc	g/m3	0.001	0.015	0.008			<0.001	0.0017	0.0049	0.0047
Benzene	g/m3	0.001	0.7	0.95	0.01	5.2	<0.001	<0.001	<0.001	<0.001
Ethylbenzene	g/m3	0.001	ID	ID	0.3	460	<0.001	<0.001	<0.001	<0.001
Toluene	g/m3	0.001	ID	ID	0.8	110	< 0.001	<0.001	<0.001	<0.001
m,p-xylene	g/m3	0.001	ID	ID	0.6	6	< 0.001	< 0.001	<0.001	< 0.001
o-xylene	g/m3	0.001	ID	0.35	0.6	S	< 0.001	<0.001	<0.001	< 0.001
C7-C9	g/m3	0.2				S	<0.2	<0.2	<0.2	<0.2
C10-C14	g/m3	0.2				S	<0.2	<0.2	<0.2	<0.2
C15-C36	g/m3	0.3				S	<0.3	<0.3	<0.3	<0.3
C7-C36 (Total)	g/m3	0.5					<0.5	<0.5	<0.5	<0.5
1-Methylnaphthalene	g/m3	0.00006					<0.00006	<0.00006	<0.00006	0.00009
2-Methylnaphthalene	g/m3	0.00006					<0.00006	<0.00006	<0.00006	0.00009
Acenaphthene	g/m3	0.00002	ID	ID			< 0.00002	<0.0002	<0.0002	0.00004
Acenaphthylene	g/m3	0.00002					<0.00002	<0.0002	0.00004	0.00003
Anthracene	g/m3	0.00002	ID	ID			<0.00002	<0.00002	<0.00002	<0.00002
Benz[a]anthracene	g/m3	0.00003					<0.00003	< 0.00003	<0.00003	<0.00003
Benzo[a]pyrene	g/m3	0.00002	ID	ID	0.0007	S	<0.00002	<0.0002	<0.0002	<0.00002
Benzo[b]&[j] fluoranthene	g/m3	0.00002					<0.00002	<0.0002	<0.00002	<0.00002
Benzo[g,h,i]perylene	g/m3	0.00002					<0.0002	<0.0002	<0.0002	<0.0002
Benzo[k]fluoranthene	g/m3	0.00002					<0.00002	<0.0002	<0.0002	<0.00002
Chrysene	g/m3	0.00002					<0.00002	<0.00002	<0.00002	<0.00002
Dibenz[a,h]anthracene	g/m3	0.00002					<0.00002	<0.00002	<0.00002	<0.00002
Fluoranthene	g/m3	0.00002					<0.00002	<0.00002	0.00005	<0.00002
Fluorene	g/m3	0.00002					<0.00002	<0.00002	<0.00002	0.00015
Indeno[1,2,3-cd]pyrene	g/m3	0.00003					<0.00003	<0.00003	<0.00003	<0.00003
Naphthalene	g/m3	0.00006	0.070	0.016		S	<0.00006	0.00019	<0.00006	0.00024
Phenanthrene	g/m3	0.00003	ID	ID			<0.00003	<0.00003	<0.00003	0.00005
Pyrene	g/m3	0.00002				S	<0.00002	<0.00002	0.00004	0.00004
Nitrate-N	g/m3	0.05	ID	0.700	50		NA	<0.05	NA	NA
Nitrite-N	g/m3	0.0025		0.700	3		NA	<0.02	NA	NA
Ammonia-N	g/m3	0.0025	0.910	0.900	J		NA	3.62	NA	NA
Dissolved Reactive Phosphorus	g/m3	0.001	0.510	0.500			NA	<0.04	NA	NA
E Coli Enumerated	MPN/100mL				1		NA	1	NA	NA
Total Coliforms Enumerated	MPN/100ml				1		NA	1720	NA	NA
LOB Leberatory Limit of Departin		. 1					NA	1720	INA	11/4

LOR - Laboratory Limit of Reporting

S - Calculated water criteria exceeds solubility limit for pure compound in water

ID - Insufficient data to derive trigger value

NA - Not analysed

(1) ANZECC (2000), Guidelines for Fresh and Marine Water Quality, Table 3.4.1

(2) MoH 2005 (Revised 2008) Drinking-water Standards for New Zealand, Tables 2.1, 2.2, 2.3

(3) MfE, 1999 (Revised 2011), Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand, Module 5 – Tier 1 groundwater acceptance criteria, Table 5.10

Appendix F Laboratory Certificates and Chain of Custody Documentation

Analytica Laboratories Limited Ruakura Research Centre 10 Bisley Road Hamilton 3214, New Zealand Ph +64 (07) 974 4740 sales@analytica.co.nz www.analytica.co.nz

Certificate of Analysis

Aurecon New Zealand Ltd42-52 Willis StreetWellington6011Attention:Nick KingPhone:027 471 3030Email:nick.king@aurecongroup.com

Sampling Site: Parliment Building

Heavy Metals in Soil

	Client	Sample ID	TP1 0.4	TP2 0.15	TP3 0.4	TP4 0.15	TP5 0.5
	Da	te Sampled	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Analyte	Unit	Reporting Limit	17-24091-1	17-24091-2	17-24091-3	17-24091-4	17-24091-5
Arsenic	mg/kg dry wt	0.125	8.00	12.3	8.47	9.49	8.73
Beryllium	mg/kg dry wt	0.013	1.12	0.99	1.19	1.41	1.21
Boron	mg/kg dry wt	1.25	3.37	3.52	3.18	3.46	4.05
Cadmium	mg/kg dry wt	0.005	0.094	0.078	0.061	0.050	0.12
Chromium	mg/kg dry wt	0.125	33.2	17.4	19.0	20.6	18.5
Copper	mg/kg dry wt	0.075	19.4	20.2	19.9	22.1	25.9
Lead	mg/kg dry wt	0.05	116	26.9	26.9	23.4	399
Mercury	mg/kg dry wt	0.025	0.11	0.077	0.055	0.048	0.21
Nickel	mg/kg dry wt	0.05	19.9	17.6	16.7	19.4	17.2
Zinc	mg/kg dry wt	0.05	108	78.0	83.6	81.1	186

Lab Reference:

Date Received:

Order Number:

Reference:

Date Completed:

Submitted by:

17-24091

5/10/2017

11/10/2017

248221

Heavy Metals in Soil

	Client	t Sample ID	TP6 0.25	TP7 0.45	TP8 0.2	TP9 0.3	TP10 0.2
	Da	te Sampled	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Analyte	Unit	Reporting Limit	17-24091-6	17-24091-7	17-24091-8	17-24091-9	17-24091-10
Arsenic	mg/kg dry wt	0.125	10.6	11.9	7.10	3.16	3.58
Beryllium	mg/kg dry wt	0.013	1.57	1.36	1.09	1.08	0.49
Boron	mg/kg dry wt	1.25	4.03	3.47	3.06	<1.25	2.63
Cadmium	mg/kg dry wt	0.005	0.055	0.10	0.042	0.029	0.15
Chromium	mg/kg dry wt	0.125	20.8	19.3	17.3	16.3	15.0
Copper	mg/kg dry wt	0.075	22.6	20.3	16.3	8.27	12.7
Lead	mg/kg dry wt	0.05	24.1	45.3	18.1	15.2	21.5
Mercury	mg/kg dry wt	0.025	0.052	0.082	0.052	0.063	0.095
Nickel	mg/kg dry wt	0.05	19.6	17.4	15.7	9.92	9.04
Zinc	mg/kg dry wt	0.05	82.6	106	68.5	45.9	50.5

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation, with the exception of tests marked *, which are not accredited.

Heavy Metals in Soil

	Client	t Sample ID	BH1/1 1.75	BH1/1 3.5	BH1/1 4.4	BH1/1 5.0	BH1/1 5.7
	Da	te Sampled	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Analyte	Unit	Reporting Limit	17-24091-11	17-24091-12	17-24091-13	17-24091-14	17-24091-15
Arsenic	mg/kg dry wt	0.125	4.25	2.23	1.73	1.67	2.70
Beryllium	mg/kg dry wt	0.013	1.20	1.0	1.01	1.34	1.07
Boron	mg/kg dry wt	1.25	1.46	<1.25	<1.25	<1.25	<1.25
Cadmium	mg/kg dry wt	0.005	0.037	0.024	0.014	0.022	0.016
Chromium	mg/kg dry wt	0.125	20.1	16.8	19.3	22.0	22.5
Copper	mg/kg dry wt	0.075	14.0	8.72	9.69	11.6	9.75
Lead	mg/kg dry wt	0.05	14.9	12.1	14.6	19.0	14.3
Mercury	mg/kg dry wt	0.025	0.046	<0.025	<0.025	0.026	<0.025
Nickel	mg/kg dry wt	0.05	12.9	11.4	12.1	12.5	12.2
Zinc	mg/kg dry wt	0.05	54.6	48.2	52.4	56.5	55.4

Heavy Metals in Soil

	Client	Sample ID	BH1/1 6.9	BH1/2 2.1	BH1/2 3.1	BH1/2 3.6	BH1/2 4.7
	Da	te Sampled	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Analyte	Unit	Reporting Limit	17-24091-16	17-24091-17	17-24091-18	17-24091-19	17-24091-20
Arsenic	mg/kg dry wt	0.125	2.12	2.33	1.71	0.447	3.05
Beryllium	mg/kg dry wt	0.013	1.28	1.11	0.36	0.66	0.87
Boron	mg/kg dry wt	1.25	<1.25	1.43	<1.25	1.33	<1.25
Cadmium	mg/kg dry wt	0.005	0.039	0.024	0.008	0.020	0.009
Chromium	mg/kg dry wt	0.125	26.6	21.2	25.5	28.5	22.3
Copper	mg/kg dry wt	0.075	10.9	10.8	7.96	23.1	15.3
Lead	mg/kg dry wt	0.05	16.4	14.4	19.2	26.0	19.6
Mercury	mg/kg dry wt	0.025	0.026	<0.025	0.044	<0.025	<0.025
Nickel	mg/kg dry wt	0.05	14.7	15.0	9.64	18.9	14.2
Zinc	mg/kg dry wt	0.05	63.0	56.3	19.5	63.9	52.3

Heavy Metals in Soil

	Client	t Sample ID	BH1/2 5.6	BH2/1 2.4	BH2/1 3.3	BH2/1 3.5	BH2/1 4.4
	Da	te Sampled	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Analyte	Unit	Reporting Limit	17-24091-21	17-24091-22	17-24091-23	17-24091-24	17-24091-25
Arsenic	mg/kg dry wt	0.125	4.97	3.42	0.828	2.52	3.15
Beryllium	mg/kg dry wt	0.013	1.31	0.98	0.32	1.33	2.03
Boron	mg/kg dry wt	1.25	<1.25	1.64	<1.25	1.43	<1.25
Cadmium	mg/kg dry wt	0.005	0.008	0.026	0.005	0.060	0.025
Chromium	mg/kg dry wt	0.125	23.5	19.5	10.6	15.3	18.3
Copper	mg/kg dry wt	0.075	17.5	16.0	1.96	10.5	10.7
Lead	mg/kg dry wt	0.05	22.6	32.9	8.71	10.4	14.8
Mercury	mg/kg dry wt	0.025	<0.025	0.14	0.041	0.046	0.028
Nickel	mg/kg dry wt	0.05	14.9	11.4	5.33	10.5	11.6
Zinc	mg/kg dry wt	0.05	56.6	59.9	28.6	48.2	53.7

Heavy Metals in Soil

	Client	Sample ID	BH2/1 5.5	BH2/2 2.1	BH2/2 2.8	BH2/2 3.9	BH2/2 4.7
Date Sampled			29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Analyte	Unit	Reporting Limit	17-24091-26	17-24091-27	17-24091-28	17-24091-29	17-24091-30
Arsenic	mg/kg dry wt	0.125	4.62	1.98	3.04	0.405	0.827
Beryllium	mg/kg dry wt	0.013	1.70	0.88	1.26	1.19	0.77
Boron	mg/kg dry wt	1.25	<1.25	<1.25	<1.25	<1.25	<1.25

Report ID 17-24091-[R00]

Page 2 of 10

Report Date 11/10/2017

This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

Heavy Metals in Soil

	Client	Sample ID	BH2/1 5.5	BH2/2 2.1	BH2/2 2.8	BH2/2 3.9	BH2/2 4.7
	Date Sampled			29/09/2017	29/09/2017	29/09/2017	29/09/2017
Cadmium	mg/kg dry wt	0.005	0.019	0.006	0.009	0.006	0.005
Chromium	mg/kg dry wt	0.125	22.4	14.2	23.8	15.1	14.5
Copper	mg/kg dry wt	0.075	14.2	6.33	7.80	9.84	8.32
Lead	mg/kg dry wt	0.05	15.1	13.7	16.6	13.2	12.3
Mercury	mg/kg dry wt	0.025	<0.025	<0.025	0.025	<0.025	<0.025
Nickel	mg/kg dry wt	0.05	13.3	7.79	7.75	10.4	8.76
Zinc	mg/kg dry wt	0.05	63.8	34.8	41.8	48.5	38.3

Heavy Metals in Soil

	Client	t Sample ID	BH2/2 5.3	BH2/2 7.8	BH2/2 8.4
	Da	te Sampled	29/09/2017	29/09/2017	29/09/2017
Analyte	Unit	Reporting Limit	17-24091-31	17-24091-32	17-24091-33
Arsenic	mg/kg dry wt	0.125	0.558	1.29	1.89
Beryllium	mg/kg dry wt	0.013	1.15	0.99	1.27
Boron	mg/kg dry wt	1.25	<1.25	<1.25	<1.25
Cadmium	mg/kg dry wt	0.005	0.010	0.017	0.022
Chromium	mg/kg dry wt	0.125	18.8	18.8	21.7
Copper	mg/kg dry wt	0.075	12.8	11.4	10.5
Lead	mg/kg dry wt	0.05	13.9	16.2	15.4
Mercury	mg/kg dry wt	0.025	<0.025	<0.025	<0.025
Nickel	mg/kg dry wt	0.05	11.0	9.62	12.1
Zinc	mg/kg dry wt	0.05	51.6	55.8	59.9

Total Petroleum Hydrocarbons - Soil

	Client	t Sample ID	TP1 0.4	TP2 0.15	TP3 0.4	TP4 0.15	TP5 0.5
Date Sampled			29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Analyte	Unit	Reporting Limit	17-24091-1	17-24091-2	17-24091-3	17-24091-4	17-24091-5
C7-C9	mg/kg dry wt	10	<10	<10	<10	<10	<10
C10-C14	mg/kg dry wt	15	<15	<15	<15	<15	<15
C15-C36	mg/kg dry wt	25	<25	<25	<25	<25	<25
C7-C36 (Total)	mg/kg dry wt	50	<50	<50	<50	<50	<50

Total Petroleum Hydrocarbons - Soil

	Clien	t Sample ID	TP6 0.25	TP7 0.45	TP8 0.2	TP9 0.3	TP10 0.2
Date Sampled			29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Analyte	Unit	Reporting Limit	17-24091-6	17-24091-7	17-24091-8	17-24091-9	17-24091-10
C7-C9	mg/kg dry wt	10	<10	<10	<10	<10	<10
C10-C14	mg/kg dry wt	15	<15	<15	<15	<15	<15
C15-C36	mg/kg dry wt	25	26	<25	<25	<25	48
C7-C36 (Total)	mg/kg dry wt	50	<50	<50	<50	<50	<50

Total Petroleum Hydrocarbons - Soil

	Clien	t Sample ID	BH2/1 4.4
	29/09/2017		
Analyte	Unit	Reporting Limit	17-24091-25
C7-C9	mg/kg dry wt	10	<10
C10-C14	mg/kg dry wt	15	<15
C15-C36	mg/kg dry wt	25	<25

Total Petroleum Hydrocarbons - Soil

	Client	t Sample ID	BH2/1 4.4		
	Da	Date Sampled			
C7-C36 (Total)	mg/kg dry wt	50	<50		

BTEX in Soil

	Clien	t Sample ID	TP1 0.4	TP2 0.15	TP3 0.4	TP4 0.15	TP5 0.5
	Date Sampled		29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Analyte	Unit	Reporting Limit	17-24091-1	17-24091-2	17-24091-3	17-24091-4	17-24091-5
Benzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Toluene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
m,p-xylene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
o-xylene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzene-d6 (Surrogate)	%	1	99.8	95.9	98.4	95.6	99.4

BTEX in Soil

	Clien	t Sample ID	TP6 0.25	TP7 0.45	TP8 0.2	TP9 0.3	TP10 0.2
	Date Sampled			29/09/2017	29/09/2017	29/09/2017	29/09/2017
Analyte	Unit	Reporting Limit	17-24091-6	17-24091-7	17-24091-8	17-24091-9	17-24091-10
Benzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Toluene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
m,p-xylene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
o-xylene	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Benzene-d6 (Surrogate)	%	1	98.4	100.6	99.3	102.2	99.8

BTEX in Soil

	Client	Sample ID	BH2/1 4.4
	Da	te Sampled	29/09/2017
Analyte	Unit	Reporting Limit	17-24091-25
Benzene	mg/kg	0.05	<0.05
Ethylbenzene	mg/kg	0.05	<0.05
Toluene	mg/kg	0.05	<0.05
m,p-xylene	mg/kg	0.05	<0.05
o-xylene	mg/kg	0.05	<0.05
Benzene-d6 (Surrogate)	%	1	98.2

Polycyclic Aromatic Hydrocarbons - Soil

	Client Sample ID			TP2 0.15	TP3 0.4	TP4 0.15	TP5 0.5
	Da	te Sampled	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Analyte	Unit	Reporting Limit	17-24091-1	17-24091-2	17-24091-3	17-24091-4	17-24091-5
1-Methylnaphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg	0.01	<0.01	<0.01	0.02	<0.01	0.05
Anthracene	mg/kg	0.01	0.01	<0.01	0.01	<0.01	0.04
Benz[a]anthracene	mg/kg	0.02	0.06	<0.02	0.07	<0.02	0.27
Benzo[a]pyrene	mg/kg	0.01	0.07	<0.01	0.09	<0.01	0.38
Benzo[b]&[j] fluoranthene	mg/kg	0.02	0.08	<0.02	0.12	<0.02	0.40

Report ID 17-24091-[R00]

	Client	Sample ID	TP1 0.4	TP2 0.15	TP2 0.15 TP3 0.4		TP5 0.5
	Dat	te Sampled	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Benzo[g,h,i]perylene	mg/kg	0.02	0.07	<0.02	0.10	<0.02	0.34
Benzo[k]fluoranthene	mg/kg	0.01	0.03	<0.01	0.04	<0.01	0.17
Chrysene	mg/kg	0.01	0.08	<0.01	0.08	<0.01	0.29
Dibenz(a,h)anthracene	mg/kg	0.01	<0.01	<0.01	0.02	<0.01	0.06
Fluoranthene	mg/kg	0.02	0.16	<0.02	0.12	<0.02	0.60
Fluorene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	0.01
Indeno(1,2,3-cd)pyrene	mg/kg	0.01	0.06	<0.01	0.09	<0.01	0.34
Naphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg	0.01	0.07	<0.01	0.04	<0.01	0.22
Pyrene	mg/kg	0.02	0.16	<0.02	0.14	<0.02	0.69
Benzo[a]pyrene TEQ (LOR)	mg/kg	0.01	0.10	0.03	0.14	0.03	0.56
Benzo[a]pyrene TEQ (Zero)	mg/kg	0.01	0.09	<0.01	0.14	<0.01	0.56
Anthracene-d10 (Surrogate)	%	1	90.0	89.6	90.3	91.5	90.8

Polycyclic Aromatic Hydrocarbons - Soil

	Clien	t Sample ID	TP6 0.25	TP7 0.45	TP8 0.2	TP9 0.3	TP10 0.2
	Da	te Sampled	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Analyte	Unit	Reporting Limit	17-24091-6	17-24091-7	17-24091-8	17-24091-9	17-24091-10
1-Methylnaphthalene	mg/kg	0.01	<0.01	0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg	0.01	<0.01	0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg	0.01	<0.01	0.09	<0.01	<0.01	<0.01
Anthracene	mg/kg	0.01	<0.01	0.09	<0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg	0.02	<0.02	0.29	<0.02	<0.02	<0.02
Benzo[a]pyrene	mg/kg	0.01	<0.01	0.32	0.02	<0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg	0.02	<0.02	0.36	0.03	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg	0.02	0.02	0.25	0.03	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg	0.01	<0.01	0.13	<0.01	<0.01	<0.01
Chrysene	mg/kg	0.01	<0.01	0.28	0.02	<0.01	<0.01
Dibenz(a,h)anthracene	mg/kg	0.01	<0.01	0.05	<0.01	<0.01	<0.01
Fluoranthene	mg/kg	0.02	<0.02	0.67	0.04	<0.02	<0.02
Fluorene	mg/kg	0.01	<0.01	0.03	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg	0.01	<0.01	0.26	0.02	<0.01	<0.01
Naphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg	0.01	<0.01	0.53	0.02	<0.01	<0.01
Pyrene	mg/kg	0.02	<0.02	0.67	0.05	<0.02	<0.02
Benzo[a]pyrene TEQ (LOR)	mg/kg	0.01	0.03	0.48	0.04	0.03	0.03
Benzo[a]pyrene TEQ (Zero)	mg/kg	0.01	<0.01	0.48	0.02	<0.01	<0.01
Anthracene-d10 (Surrogate)	%	1	91.5	93.0	94.0	93.8	93.9

Polycyclic Aromatic Hydrocarbons - Soil

Client Sample ID			BH1/1 1.75	BH1/1 3.5	BH1/1 4.4	BH1/1 5.0	BH1/1 5.7
Date Sampled		29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	
Analyte	Unit	Reporting Limit	17-24091-11	17-24091-12	17-24091-13	17-24091-14	17-24091-15
1-Methylnaphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	, i		<0.01	<0.01	<0.01	<0.01	<0.01

Report ID 17-24091-[R00]

Page 5 of 10

Report Date 11/10/2017

This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

	Client	Sample ID	BH1/1 1.75	BH1/1 3.5	BH1/1 4.4	BH1/1 5.0	BH1/1 5.7
	Dat	e Sampled	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Acenaphthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Fluorene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene TEQ (LOR)	mg/kg	0.01	0.03	0.03	0.03	0.03	0.03
Benzo[a]pyrene TEQ (Zero)	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene-d10 (Surrogate)	%	1	89.1	89.3	89.2	89.7	90.5

Polycyclic Aromatic Hydrocarbons - Soil

	Client	t Sample ID	BH1/1 6.9	BH1/2 2.1	BH1/2 3.1	BH1/2 3.6	BH1/2 4.7
	Da	te Sampled	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Analyte	Unit	Reporting Limit	17-24091-16	17-24091-17	17-24091-18	17-24091-19	17-24091-20
1-Methylnaphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Fluorene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene TEQ (LOR)	mg/kg	0.01	0.03	0.03	0.03	0.03	0.03
Benzo[a]pyrene TEQ (Zero)	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene-d10 (Surrogate)	%	1	85.5	86.3	89.4	90.4	90.8

Report ID 17-24091-[R00]

	Clien	t Sample ID	BH1/2 5.6	BH2/1 2.4	BH2/1 3.3	BH2/1 3.5	BH2/1 4.4
	Da	te Sampled	29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017
Analyte	Unit	Reporting Limit	17-24091-21	17-24091-22	17-24091-23	17-24091-24	17-24091-25
1-Methylnaphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg	0.01	<0.01	0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Fluorene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Pyrene	mg/kg	0.02	<0.02	0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene TEQ (LOR)	mg/kg	0.01	0.03	0.03	0.03	0.03	0.03
Benzo[a]pyrene TEQ (Zero)	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene-d10 (Surrogate)	%	1	88.2	89.4	88.2	86.6	87.6

Polycyclic Aromatic Hydrocarbons - Soil

	Clien	t Sample ID	BH2/1 5.5	BH2/2 2.1	BH2/2 2.8	BH2/2 3.9	BH2/2 4.7	
	Date Sampled		29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	
Analyte	Unit	Reporting Limit	17-24091-26	17-24091-27	17-24091-28	17-24091-29	17-24091-30	
1-Methylnaphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
2-Methylnaphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Acenaphthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Acenaphthylene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Anthracene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Benz[a]anthracene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Benzo[a]pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Benzo[b]&[j] mg/kg 0.02		<0.02	<0.02	<0.02	<0.02	<0.02		
Benzo[g,h,i]perylene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Benzo[k]fluoranthene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Chrysene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Dibenz(a,h)anthracene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Fluoranthene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Fluorene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Indeno(1,2,3-cd)pyrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Naphthalene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Phenanthrene	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Pyrene	mg/kg	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Benzo[a]pyrene TEQ (LOR)	mg/kg	0.01	0.03	0.03	0.03	0.03	0.03	
Benzo[a]pyrene TEQ (Zero)	mg/kg	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	

Report ID 17-24091-[R00]

This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

	Client Sample ID		BH2/1 5.5 BH2/2 2.1		BH2/2 2.8	BH2/2 3.9	BH2/2 4.7	
	Date Sampled		29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	
Anthracene-d10 (Surrogate)	%	1	88.1	88.7	89.5	87.2	88.1	

Polycyclic Aromatic Hydrocarbons - Soil

	Client	t Sample ID	BH2/2 5.3	BH2/2 7.8	BH2/2 8.4
	Da	te Sampled	29/09/2017	29/09/2017	29/09/2017
Analyte	Unit	Reporting Limit	17-24091-31	17-24091-32	17-24091-33
1-Methylnaphthalene	mg/kg	0.01	<0.01	<0.01	<0.01
2-Methylnaphthalene	mg/kg	0.01	<0.01	<0.01	<0.01
Acenaphthene	mg/kg	0.01	<0.01	<0.01	<0.01
Acenaphthylene	mg/kg	0.01	<0.01	<0.01	<0.01
Anthracene	mg/kg	0.01	<0.01	<0.01	<0.01
Benz[a]anthracene	mg/kg	0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene	mg/kg	0.01	<0.01	<0.01	<0.01
Benzo[b]&[j] fluoranthene	mg/kg	0.02	<0.02	<0.02	<0.02
Benzo[g,h,i]perylene	mg/kg	0.02	<0.02	<0.02	<0.02
Benzo[k]fluoranthene	mg/kg	0.01	<0.01	<0.01	<0.01
Chrysene	mg/kg	0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	mg/kg	0.01	<0.01	<0.01	<0.01
Fluoranthene	mg/kg	0.02	<0.02	<0.02	<0.02
Fluorene	mg/kg	0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	mg/kg	0.01	<0.01	<0.01	<0.01
Naphthalene	mg/kg	0.01	<0.01	<0.01	<0.01
Phenanthrene	mg/kg	0.01	<0.01	<0.01	<0.01
Pyrene	mg/kg	0.02	<0.02	<0.02	<0.02
Benzo[a]pyrene TEQ (LOR)	mg/kg	0.01	0.03	0.03	0.03
Benzo[a]pyrene TEQ (Zero)	mg/kg	0.01	<0.01	<0.01	<0.01
Anthracene-d10 (Surrogate)	%	1	88.1	94.2	98.2

Moisture Content

Clie	Client Sample ID		TP2 0.15	TP3 0.4	TP4 0.15	TP5 0.5	
Date Sampled		29/09/2017	29/09/2017	29/09/2017 29/09/2017		29/09/2017	
Analyte Uni	Reporting Limit	17-24091-1	17-24091-2	17-24091-3	17-24091-4	17-24091-5	
Moisture Content %	1	9	6	5	5	6	

Moisture Content

Clier	Client Sample ID		TP7 0.45	TP8 0.2	TP9 0.3	TP10 0.2	
Date Sampled		29/09/2017	29/09/2017 29/09/2017		29/09/2017	29/09/2017	
Analyte Unit	Reporting Limit	17-24091-6	17-24091-7	17-24091-8	17-24091-9	17-24091-10	
Moisture Content %	1	6	8	6	17	24	

Moisture Content

	t Sample ID te Sampled	BH1/1 1.75 29/09/2017	BH1/1 3.5 29/09/2017	BH1/1 4.4 29/09/2017	BH1/1 5.0 29/09/2017	BH1/1 5.7 29/09/2017
Analyte Unit	Reporting Limit	17-24091-11	17-24091-12	17-24091-13	17-24091-14	17-24091-15
Moisture Content %	1	15	17	18	19	13

Moisture Content

Clien	Client Sample ID		BH1/2 2.1	BH1/2 3.1	BH1/2 3.6	BH1/2 4.7	
Date Sampled		29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	
Analyte Unit	Reporting Limit	17-24091-16	17-24091-17	17-24091-18	17-24091-19	17-24091-20	
Moisture Content %	1	11	20	29	21	29	

Moisture Content

Cli	ent Sample ID	BH1/2 5.6	BH2/1 2.4	BH2/1 3.3	BH2/1 3.5	BH2/1 4.4	
Date Sampled		29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017	
Analyte Ur	t Reporting Limit	17-24091-21	17-24091-22	17-24091-23	17-24091-24	17-24091-25	
Moisture Content	6 1	26	17	17	13	18	

Moisture Content

(Client Sample ID		BH2/1 5.5 BH2/2 2.1		BH2/2 2.8	BH2/2 3.9	BH2/2 4.7	
Date Sampled		29/09/2017	29/09/2017	29/09/2017	29/09/2017	29/09/2017		
Analyte	Unit	Reporting Limit	17-24091-26	17-24091-27	17-24091-28	17-24091-29	17-24091-30	
Moisture Content	%	1	19	18	17	15	18	

Moisture Content

C	Client	Sample ID	BH2/2 5.3	BH2/2 7.8	BH2/2 8.4		
	Dat	te Sampled	29/09/2017	29/09/2017	29/09/2017		
Analyte L	Jnit	Reporting Limit	17-24091-31	17-24091-32	17-24091-33		
Moisture Content	%	1	14	17	12		

Method Summary

Elements in Soil	Acid digestion followed by ICP-MS analysis. US EPA method 200.8.
TPH in Soil	Solvent extraction, silica cleanup, followed by GC-FID analysis. (C7-C36)
BTEX in Soil	Solvent extraction, followed by Headspace GC-MS analysis. US EPA method 5021A.
PAH in Soil	Solvent extraction, silica cleanup, followed by GC-MS analysis. Benzo[a]pyrene TEQ (LOR) : The most conservative TEQ estimate, where a result is reported as less than the limit of reporting (LOR) the LOR value is used to calculate the TEQ for that PAH. Benzo[a]pyrene TEQ (Zero) : The least conservative TEQ estimate, PAHs reported as less than the limit of reporting (LOR) are not included in the TEQ calculation. Benzo[a]pyrene toxic equivalence (TEQ) is calculated according to 'Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health'. Ministry for the Enivronment. 2011.
Moisture	Moisture content is determined gravimetrically by drying at 103 °C.
PAH in Soil	Solvent extraction, silica cleanup, followed by GC-MS analysis. Benzo[a]pyrene TEQ (LOR) : The most conservative TEQ estimate, where a result is reported a less than the limit of reporting (LOR) the LOR value is used to calculate the TEQ for that PAH. Benzo[a]pyrene TEQ (Zero) : The least conservative TEQ estimate, PAHs reported as less than the limit of reporting (LOR) are not included in the TEQ calculation. Benzo[a]pyrene toxic equivalence (TEQ) is calculated according to 'Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health'. Ministry for the Enivronment. 2011.

Report Comments

Samples were received by Analytica Laboratories in acceptable condition unless otherwise noted on this report.

Report ID 17-24091-[R00]

Karam Wadi, B.E. (Hons)

Technologist

t Type	NTRACT		ASB	ESTO	os							
lytica to li contractor	to Invoice	ן נ					-					
		CLIENT INPO	17-2	4091				Page #	1		of	8
Chent	AnRECON			1000 C 1000 C 1000	-			1	1	Custome	r Comments/	
Address	12 - 52 WEW	123 Sr	, Witt	CT.NI	TON	6011		1		state and the second		
Project teader	NECK KENG			and the second second				Sam	ples	· BH	11-0	0.1 3
Project, ID	248221			PO 8	_							ceived Have
Site	CARL THATENE !	Beauty	IN CS				1					
Sampler	0.0.0	-					-	email	ed ci	ient.	Havi	29 917.
Emai	02+ 4+	02.00						-				
havatca Emoil	NZNº @ au							-				
[- and a					-	1				
		T	~		BORATORY	ISE ONLY	_					
	Laboratory Job #	L17	-24C	191	Seal Status	1				Priority (mork with X)	
Date Recoived	5/10/17		AC	144	Sample Chilica	/	Routhe	1/	Ugat			-
	1		1		TESTS REQU	ESTED			a les ha e			
		_						Analysis Requests/Suites				
Lapito	Sumple to	Depth	Date	Time	Matrix	# Cont	[[starTed: Name]	[Enter Test Name]	[Enter Test Marna]	[Free Tess Name]	[Ertor Test Name]	Sample Comments
	TPLOWHA	0.4			Soci		-	1				
	TPI 04 AS	0.4			11				1			7
	TPID-1 Hon	0.1		1			1					
and the second	TPIDIAS			1				TE	11	1		
	TP 2 0-15 da							-	1-1-	-		
	TP-2 0 15 A4	1		1	1		-	1				
	SP2 0.45 Ha	with the section of the section of the					-	0				
	TP2 0-45 Abb						1	1				and the second
								1				
	TP3 C 2 Har	and the second se										
	TP3 0-2 ADD	1						E				
	CP3 D L Hm	and the second se										
	TP30-4 Asb	1]		1				-
	TOU DIS HM							<	2			
	Tey ous Ash	in the second					1					
	TPy 0-35 Hm				-							
	TPU 0.35 Ask	035		1	11	1						
<u> </u>	islanguished by			1	ushed by	Har		1 1				

CLIENT INFORMATION Page # of Chent AURECON Customer Comments/Instructions Address Projectleader NICK KING Project ID 125821 109 Site Sampler Phone Email Invoice Einad LABORATORY USE ONLY Laboratory tob # Seal States Priority (mark with 20) Date Received Received By Sample Cinteri fouture Urgent TESTS REQUESTED Analysis Request/Seites [Enter Test Name] Enter Test Marrel Test Name] [Enter Test Name] [Enter Test Nome Lah IO Sample (D Depth Date 1.000 Matrix # Cont Sample Comments Enter PS 0.5 Ash ES O IS HM Tes 0.15 Asb TP6 0.25 Ad P7 0.45 Hm 170.15 Hm TER OUSAS

Reinquished by

1052

there.

Conner

COULLET IL

Reinquished by

TH US

Data

		CLIENT IN	FORMATION					Page		2	of	1 2
Clent	AUD FLOOM	and the second se						-	_	Custome	-	Instructions
Address	42-52 LA	and s	ST NO	Ellan	LION	601		1		~~~~	- connently	maductions
Proyect beader	NICER KING						-	-1				
Project 10	200 88H 7.4			POH	1			-				
Site	PARALIAM	NT						-				
Sampler												
Phone	023 41	3030)									
Ernad	DIES KODA	Ban	e long	94400	600	1						
Involce Email	NZAP Qui	econ	rang	Cont								
		and the second second	And the second second	U	BORATORY	USE ONLY	,				10.00	
	Laboratory Jub #	1			Soaf Status	1	T			Priorityfe	mark with XJ	
Date Received		/	iterewaa by	T	Sample Chele	4	Eomne	1	ligent		nere waa Aj	
						1	-	1	1			
	1	1	1	1	TESTS REQU	UESTED	,			-		
								Anal	yas Requests	/Suites		
tab ID	Sample to	Depth			1	1	fame	[ama]	ier.	ne]	11er	
1010-00 U	and party	Ucpan	Date	Turne	Matrix	# Cont	Taurus	Enter Tep: Name)	Goter Tech Nome	[Enter Tast Nawe]	Enter Test New el	Sample Comments
						1	Entre:	Enter	1020L	Pitor -	ater 7	
										275		
		<u>e 1</u>			Son				1			
	TP 9 BUL HM	01			12	1		1			1	1
	TP 9 D 3 Abh	0.3	1				F	1-1				
	TP 903 Hm	03						11				When
	TP 10 0-2 Hm	02		B			16				/	1
	7P 10 012 AVR	0.2		1			AN	D			7/1	
	Bh 1/1 0-1 Hm	0.1					-	T	C		1.	1
	Bh 1/2 1 75 Hm	175	the states				-	2	20	amp	Ne m	A received
Í	Bh 1/1 +75 AN	175		1			1				-/-	
	a lot the second state of						160-				1	
	BETTE 35 ASD	30			_			-				
	0	20			_		1	5		1		
	Bh 1/1 4 O Han	1					1	-		/		1
	Sh' 11 6 0 Asto		1	1			K)		/		and the second se
	Chill a with						T	1			1	
	Bhite yeye Ast	44	/				-	-			1	
	Bh 1 50 Ab	50			11			-				
	elingunbed by			Relingur	and the second se		1	Couner				
Date		Tene	1	Date	1	Itme		Counter#		No. is Barrow Co.ini		

		CLIENT IN	FORMATION					Paga II			of	8
Client	AURECON							1	and the second second	Custome	er Commenta	Anstructions
Address	u1-52 t	Contraction of the second second	s Sr	WELL	11-30-1	DN I	6611				in the second second	
Project Loador	NITCH KIN	1.2						_				
Project 4D	248221			PO II	1							
Site	PARCIAMEN							_				
Satopler Phone	0.2.2	2022										
Email	027 11 71 3					• • • • • • • • • • • • • • • • • • •		_				
awore Email	RIJCK-Kong (a second as a s	the second data and the second data	<u>cam</u>			-					
	NZAP	2 61 64	groug	<u>uom</u>				1				
				U	BORATORY	USE ONLY	-					
	Laboratory Job II			-	Seal States			-		Priority (mark with X)	
Date Reconved	1		Received By	1	Sample Chiller	2	Routine		ungent			
					TESTS REQL	JESTED						
	1	1	1	1	1	1	1	Analy	ds Requests	/Suiten		
Lab ID	Sample +D	Depth	Date	Time	Matrix	# Cont	Coter Fest Name]	[Enter Fest Name]	(Entor Test Ninac)	[Enux Fan: Name]	[Enter Tex Neme]	Sample Comments
	Bb 1/1 50 Hm	50			SOL							
	86 1/1 57 Hm	5.7			11			1		/	1	
	Ch 1/1 S. 7 Asto	5.7			1			5		1	1	
	Bh1/16.9 Hm	1.9	1	1			1	-				
	Bh 1/1 6.9 Ash	6.9					1					- for the second
	Bh/178 Hm							3				-
	and the second se											
	Bhy 7.8 Ash	7.8										
	Bh / 8.7 Hm	87			-			-				
	36 V1 8.7 Ash	8-7	1				l	A		-		
	BLY 99 ASL	9.9					04	3	1			1
	8211 99 Hm	99				_	-				/	
	Bh 1/2 D.1	01	1				6	-				
	Bh 1/2 0 5A50	Contract of the local division of the local	1				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1		1		
	Bh 12 0 5 Hay	Contraction of the local diversity of the loc	7					-		- James		
	Bh 12 12 Ab	1.2						-				
	Bh 1/2 +2 Ha	1.7										
	Relinquished by	14		Indian	dshed by							
Date		Tune		Date	1	1000		Counter				
		THUE		LAGE C	1	Gime		Counter #				

CLIENT INFORMATION Page # of Aucecon Choat Customer Comments/Instructions Address Finject Leader . Project ID POI 1646.05 Sampler Phone Emmi King AQUERLON invoice frand LABORATORY USE ONLY Laboratory tob at Seal Status Priority (mark with X) Date Received Recoverd by ange, units Ratione dirgent TESTS REQUESTED Analysis Requests/States Test Name! r Tess hand, [Liner Test Name] [อีกริม โดระ ที่เขาค] Coler Tax Wares 1.50 10 Sample to Depth Date Time Mateo Il Cont Sample Comments [Caler Enter 112 21 Ho Va 1,1/2 3 1 ASY Bh1/267Ash 815 1/2 9.8 Ast Relinquished by Relanquished by Courier Dahr Fine. Date Tate Connera

					All shares in the same state							
	1.0	CLIENT IN	FORMATION					Page A		6	of	8
Client Acdress	AURELON							1		Custom	er Commonts/	Instructions
Project Leader	42-52 0		551	1200	adara	1 60		_				
Project (D	248121	5		FOR	1			-				
Site	PARLIAME	NE		1FO P				-				
Sampler	1							-				
Phone	027 471	3030	>					-				
Eural	1	NELK. KENG QOWECO			1000			-				
Invotro Facad					and the second se			-				
				8 CON				1				
and the second se	Laboratory Job #	1		U	BORATORY	1	1					
Date Received	(1		1	Seal Status					Priority	(mark with X)	
Cale received			Received By	1	Strapic Chiller	4	Routine	1	Urgent			
	1				TESTS REQU	JESTED						
				1	1	1	1	Anal	ysis Requests	/Suites]	
Lahitti	Sample 10	Depth	Date	Timae	Mətriz	li Cont	(Enter Test Name)	(Enter Test Name)	Enter Yest Nume)	Entor Teat Name)	Enter Test Namo,	Sample Comments
							(Enter T	[foter1	[Enter T	Entor 1	jEnter To	
	the same of the sa	0.4			SOIL					/		
	8h211 0.4 Hm	0.4			4					/		
	6h 2/1 2.4 Hm	2.4	1		1		1	1	1			
	Bh 211 2-4 Hm	24	ý				1		-			
	Bh 2 1 2 - 8 Ash	2.8					1	3			1	Annual Annual Contraction of the second
	Bh 2 1 2-8 Hm	2.8					1			-		
	642133Abb	3.3						2				
	2	and a supervision of the local division of	-				1	2		<u></u>		
	Bh 2 13.3 Hm	0.0						\geq				
	BH 211 35 AN	3.5										
	B62/135 Hm.	3.5	1				1					
	8h R 144 Ash	44						3				
	8h 2/1 4 4 Hm											and the second se
	Ph 211 5.5 Hm		/					9-				The second second
	BL21155A.6	55						T				
	Bh 211 6 4 Hm							~				
	8h 2 16 + Ash											
		64			1							
	tetinguished by		Reimporshed by C									

CLIENT INFORMATION Page # OT Gent Customer Comments/Instructions Address WILLIS WELL ENGLAN 6011 Project Leader Kanla Project ID FO a Sate Sampler Phone 30 Email . King Dawe congroup s.k havonce Frage JZAP

.

	Laboratory Job 8	1	and the second second second second	U	BORATORY	USE ONLY	-	-	1100000			
late Received	1	[1		Small Staturs					Priority	(mark with)	X)
Aato Nocewed	1		Received By		Sample Childe		Route	ne	Urgent			
					TESTS REQU	ESTED						
								Anis	ysis Pequest	v/Suites		1
Lah ID	Sample to	Depth	Date	70510	Matox	# Cont	[Enter Tour Name]	[Earer Tosi Mame]	[Enter Test Name!	[Crist Test Name)	[Enter Test Name]	Sample Comments
	61-211 8.0 Asb	0.0			501-	****			1		1	
	Bh 211 8.0 Hm	8.0		6	0				1		1	
	Bh 2/1 9.7 Hm	9.7	1			/				1	1	
	Bh 211 9.7 A.b	97						10	1	S	amo	les not received
	BV. 212 2 1 Asia	2.1						12			1 P	in the tecenter
	Bh 2/2 2.1 Hr	21		and a local second second			1	10			17	
	131-212 2.8 Ad	2.2					1	D		7		
	612 8 2 9 Hon	2.8			-			1	1	2		
	Bh=12 3-9 Ash	39					1	0	-			
	B6212 39 Hm	39				/		17		7	/	
	BR212 M 7 Ach	4.7						N		1		
	and the second se	4.7						10				
		5.3					1	R			-	1
	Bh2 2 5.3 Hm	5.3				1		X			7	
	successive state and the second state and the secon	6.7				1						
	Bar 2 7.8 Ha	7-8			1							
1	Reinquished by			Relation	shed by	177E-contractor		Couner				
Date		Time		Date	1	Tane		Counce #		and the second se		

1.00

ENVIRONMENTAL TESTINE.

LABORATORIES

		CHENTE	FORMATION					Paged	1	8	1 of	1 3
Client	AURECON							1	-		-	i O Is/instructions
Address	41-52 WT	LLIS	51.1	JEwe	NOTON	160	21	1				Ly not centre
Suger Readur	NILK KIN	G										
Project 40	24 8221			POR								
Stre	PARLAMED	UT.										
Sampler												
Shine	027 471	3030						1		-		
kuvai	Nick bag	Ban	econo	roup	LON							
avaice Email	NICK Kings	18.000	group	LLAN								
					MUORA HORY	DER CHARGE						
(Loboratory Job #	1			State States	I	1					
ate Received		1	Rectived to	1						Priority	(mark with X))
				1	haropic Cortes	1	licutine	1	Urgentit	1		
					TESTS REQU	FSTED						
		1	1	1	1			Analy	in Teques	(Gentes		1
1					1			-	-	1.000	1	
12540	Sample 1D	Ougath.	Date	Tune	Matris	T Cont	Enth' Tau Nama)	Ever Text furnel	Enter Tech Name	Enter Tast Name}	Jenne Tay Manaj	Semala Course
				1			or Tau	or Text	r Test	E E	10	Sample Comments
						1	The star	Entr	Eric	Ento	lings.	
1	SL 2/2 7 8 Asia	7B			Soit							
	54 2/2 8.4 Hm	Alle			10							
	Brz12 84 Adr			1				-	-	5	1	
	N 4 4 4 H W	1 0-1		2		1		1 1 1			1 1	
	2 11 74 3			1				2			1	the second se
	9-212 9-7 Ha	97						2	0	51	D	
	BAZI 4.7 Ha BAZIZ 9 7 ASL				1		T	62	0	21	D	-/
	9-212 9-7 Ha	97			//				C	DL	D	
	9-212 9-7 Ha	97			// //				0	51	D	
	9-212 9-7 Ha	97			//		T		0	51	D	
	9-212 9-7 Ha	97			/ //				0	51	D	
	9-212 9-7 Ha	97			<i>h</i>				0			
	9-212 9-7 Ha	97										
	9-212 9-7 Ha	97				,						
	9-212 9-7 Ha	97										
	9-212 9-7 Ha	97										
	9-212 9-7 Ha	97										
	9-212 9-7 Ha	97										
	9-212 9-7 Ha	97										
	9-212 9-7 Ha	97		Palingue.								

Anelytica Laboratories Etd. 10 Booky Brod. Provide Bag ES25. Phone 1647 924 aug. Ruainna Research Centre Gumilion 3/10 Book Pollona. Email: Guorente Operand acadymics conv.

endphoreac

Environmental Sample Reception

From:	Shauna McAuley <shauna.mcauley@aurecongroup.com></shauna.mcauley@aurecongroup.com>
Sent:	Wednesday, 4 October 2017 4:39 p.m.
To:	Environmental Sample Reception
Cc:	Nick King
Subject:	RE: Aurecon Chain of Custody

Hi Hariata

Please see below. Can you please continue to hold cold all the other samples.

Many thanks,

Shauna

Asbestos P/A	Heavy Metals and PAH	Heavy Metals, TPH (C7-36) and BTEX, and PAH
TP1 0.4 Asb	BH 1/1 1.75 HM	TP1 0.4 HM 🗸
TP2 0.15 Asb	BH 1/1 3.5 HM 🗸	TP2 0.15 HM 🗸
TP3 0.4 Asb	BH 1/1 4.4 HM	TP3 0.4 HM 🗸 🖉
TP4 0.15 Asb	BH 1/1 5.0 HM V	TP4 0.15 HM
TP5 0.5 Asb	BH 1/1 5.7 HM	TP5 0.5 HM
TP6 0.25 Asb	BH 1/1 6.9 HM	TP6 0.25 HM
TP7 0.45 Asb	1	TP7 0.45 HM
TP8 0.2 Asb 🗸	BH 1/2 2.1 HM 🗸	TP8 0.2 HM 🏑
TP9 0.3 Asb 🗸	BH 1/2 3.1 HM 🗸	TP9 0.3 HM 🗸 /
TP10 0.2 Asb	BH 1/2 3.6 HM 🗸	TP10 0.2 HM
1	BH 1/2 4.7 HM 🗸	BH 2/1 4.4 HM
BH 1/1 1.75 Asb	BH 1/2 5.6 HMI	
BH 1/1 3.5 Asb	1	
BH 1/1 4.4 Asb	BH 2/1 2.4 HM V	
BH 1/1 5.0 Asb	BH 2/1 3.3 HM	
BH 1/1 5.7 Asb 🗸	BH 2/1 3.5 HM 🗸 🖊	
BH 1/1 6.9 Asb /	BH 2/1 5.5 HM 🗸	
	/	
8H 1/2 2.1 Asb J	BH 2/2 2.1 HM	
BH 1/2 3.1 Asb	BH 2/2 2.8 HM	
BH 1/2 3.6 Asb 🧡	BH 2/2 3.9 HM V	
BH 1/2 4.7 Asb	BH 2/2 4.7 HM	
BH 1/2 5.6 Asb 🗸	BH 2/2 5.3 HM	
1	BH 2/2 7.8 HM	
BH 2/1 2.4 Asb	BH 2/2 8.4 HM 🎽	
BH 2/1 3.3 Asb		
BH 2/1 3.5 Asb		
BH 2/1 4.4 Asb.		
BH 2/1 5.5 Asb		
DU 2/2 24 Ach		
BH 2/2 2.1 Asb		
BH 2/2 2.8 Asb		
BH 2/2 3.9 Asb		
BH 2/2 4.7 Asb		
BH 2/2 5.3 Asb		
BH 2/2 7.8 Asb BH 2/2 8.4 Asb		

Shauna McAuley Geoenvironmental Engineer, Aurecon T +64 4 4718790 Shauna.McAuley@aurecongroup.com

DISCLAIMER

From: Environmental Sample Reception [mailto:enviro.reception@analytica.co.nz] Sent: Wednesday, 4 October 2017 3:27 PM To: Shauna McAuley <Shauna.McAuley@aurecongroup.com> Subject: RE: Aurecon Chain of Custody

Hi Shauna

No problem at all, list them here on the email and we will pick up the original CoC form and amend to requested analysis ©

Thank you

Hari

From: Shauna McAuley [mailto:Shauna.McAuley@aurecongroup.com] Sent: Wednesday, 4 October 2017 3:06.p.m. To: Environmental Sample Reception <<u>enviro.reception@analytica.co.nz</u>> Subject: RE: Aurecon Chain of Custody

Hi again Hariata

I have a list of samples from the batch we sent you last week which we would like analysed – do you require these to be sent through on an official CoC form or can I just list them to you here on email?

Thanks Shauna

Shauna McAuley Geoenvironmental Engineer, Aurecon T +64 4 4718790 Shauna.McAuley@aurecongroup.com

DISCLAIMER

From: Environmental Sample Reception [mailto:enviro.reception@analytica.co.nz] Sent: Monday, 2 October 2017 5:15 PM To: Shauna McAuley <<u>Shauna.McAuley@aurecongroup.com</u>> Subject: RE: Aurecon Chain of Custody

Hi Shauna

No problem at all, yes all samples received had duplicates O

Hari

From: Shauna McAuley [mailto:Shauna.McAuley@aurecongroup.com] Sent: Monday, 2 October 2017 4:04 p.m. To: Environmental Sample Reception <<u>enviro.reception@analytica.co.nz</u>> Subject: RE: Aurecon Chain of Custody

From: Shauna McAuley [mailto:Shauna.McAuley@aurecongroup.com] Sent: Thursday, 28 September 2017 6:55 p.m. To: Environmental Sample Reception <enviro.reception@analytica.co.nz>-Cc: Nick King <<u>Nick.King@aurecongroup.com</u>> Subject: Aurecon Chain of Custody Importance: High

Hi there

Please see the document attached, which is in relation to samples sent to Analytica this afternoon for the attention of Rachael Casey. Please note these samples are for 'Hold Cold' currently. I hope this is all in order – unfortunately we had a bit of a rush to get our items to the courier – if there appears to be anything missing, or any issues at all, then please do not hesitate to get in touch!

Kind regards Shauna

Shauna McAuley Geoenvironmental Engineer, Aurecon T +64 4 4718790 Shauna.McAuley@aurecongroup.com Spark Central, Level 8, 42-52 Willis Street, Wellington New Zealand 6011 PO Box 1591, Wellington 6140 aurecongroup.com

DISCLAIMER

Hi Hariata

Thank you so much for chatting to me today. That's fine that BH1/1 0.1 and 2/1 9.7 haven't been received, this is likely input error on my part, I may have misread a label.

There should be an asbestos and a metals sample for every depth – I think I might have missed one or two of the duplicates out on my CoC form! I know you're just holding cold at the minute, but if there are any missing duplicates then, when we do move forward with sampling, I would really appreciate if you could let me know?

Thanks again!

Kind regards Shauna

Shauna McAuley Geoenvironmental Engineer, Aurecon T +64 4 4718790 Shauna.McAuley@aurecongroup.com

DISCLAIMER

From: Environmental Sample Reception [mailto:enviro.reception@analytica.co.nz] Sent: Friday, 29 September 2017 11:44 AM To: Shauna McAuley <<u>Shauna.McAuley@aurecongroup.com</u>> Cc: Nick King <<u>Nick.King@aurecongroup.com</u>> Subject: RE: Aurecon Chain of Custody Importance: High

Morena Shauna & Nick

We have received your samples, thank you very much

We have don't have samples BH1/1 Depth 0.1 & BH2/1 Depth 9.7

I've booked them in an you will see I have added them to the sample receipt however in the acceptance part you will see samples not received.

Thank you

Nāku noa, nā (kind regards)

Hariata Anderson

Laboratory Technician Environmental Sample Reception

Analytica Laboratories Ltd Ruakura Research Centre 10.Bisley Road, Hamilton 3214 New Zealand

Ph +64 (7) 974 4740 ext 1

www.analytica.co.nz

Report Date: 11 Oct 2017

Certificate Number: P1710061439

PRECISE

Analytica Laboratories Ruakura Research Centre, 10 Bisley Road, Private Bag 3123,

Client Reference: 17-24091

Dear Hariata Anderson,

Re: Asbestos Soil Identification Analysis – Parliament Building

33 sample(s) received on 06 Oct 2017 by Karleen Glen.

The results of fibre analysis were performed by Laura Liu of Precise Consulting and Laboratory Ltd on 10 Oct 2017.

The sample(s) were stated to be from Parliament Building.

Sample analysis was performed using polarised light microscopy with dispersion staining in accordance with AS4964-2004 Method for the qualitative identification of asbestos in soil samples.

The results of the fibre analysis are presented in the appended table.

Should you require further information please contact Laura Liu.

Yours sincerely

云)金文子

Laura Liu PRECISE LABORATORY IDENTIFIER

P1710061439 - **1** of 7

Sample Analysis Results

Certificate Number: P1710061439 Report Date: 11 Oct 2017 Site Location: Parliament Building

Note 1: The reporting limit for this analysis is 0.1g/kg (0.01%) by application of polarised light microscopy, dispersion staining and trace analysis techniques.

Note 2: If mineral fibres of unknown type are detected (UMF), by PLM and dispersion staining, these may or may not be asbestos fibres. To confirm the identity of this fibre, another independent analytical technique such as XRD analysis is advised.

Note 3: The samples in this report are "As Received". The laboratory does not take responsibility for the sampling procedure or accuracy of sample location description. This document may not be reproduced except in full.

Identified by:

~ 金子

Approved Identifier: Laura Liu

Reviewed by:

えるなみ

Key Technical Person: Laura Liu

Sample ID	Client Sample ID	Sample Location/Description/Dimensions	Analysis Results
TP1 0.4	TP1 0.4	- Non-Homogeneous Soil 186.0g	No Asbestos Detected Organic Fibres
TP3 0.4	TP3 0.4	- Non-Homogeneous Soil 374.0g	No Asbestos Detected Organic Fibres
TP4 0.15	TP4 0.15	- Non-Homogeneous Soil 246.0g	No Asbestos Detected Organic Fibres
TP5 0.5	TP5 0.5	- Non-Homogeneous Soil 205.5g	No Asbestos Detected Organic Fibres
ТР9 0.3	ТР9 0.3	- Non-Homogeneous Soil 103.5g	No Asbestos Detected Organic Fibres
TP10 0.2	TP10 0.2	- Non-Homogeneous Soil 138.5g	No Asbestos Detected Organic Fibres
BH1/1 3.5	BH1/1 3.5	- Non-Homogeneous Soil 158.5g	No Asbestos Detected Organic Fibres
BH1/1 4.4	BH1/1 4.4	- Non-Homogeneous Soil 165.5g	No Asbestos Detected Organic Fibres

Issue Date: Jun 2017 | Version 10 Precise Consulting & Laboratory Limited Unit 1, 30 Greenpark Road, Penrose, Auckland 8023

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

P1710061439 - 2 of 7

Sample Analysis Results

Certificate Number: P1710061439 Report Date: 11 Oct 2017 Site Location: Parliament Building

Γ

Sample ID	Client Sample ID	Sample Location/Description/Dimensions	Analysis Results
BH1/1 5.0	BH1/1 5.0	- Non-Homogeneous Soil 198.0g	No Asbestos Detected Organic Fibres
BH1/1 5.7	BH1/1 5.7	- Non-Homogeneous Soil 231.5g	No Asbestos Detected Organic Fibres
BH1/2 2.1	BH1/2 2.1	- Non-Homogeneous Soil 204.5g	No Asbestos Detected Organic Fibres
BH1/2 3.1	BH1/2 3.1	- Non-Homogeneous Soil 113.5g	No Asbestos Detected Organic Fibres
BH1/2 3.6	BH1/2 3.6	- Non-Homogeneous Soil 140.0g	No Asbestos Detected Organic Fibres
BH1/2 4.7	BH1/2 4.7	- Non-Homogeneous Soil 135.0g	No Asbestos Detected Organic Fibres
BH2/1 2.4	BH2/1 2.4	- Non-Homogeneous Soil 260.5g	No Asbestos Detected Organic Fibres
BH2/1 3.3	BH2/1 3.3	- Non-Homogeneous Soil 183.0g	No Asbestos Detected Organic Fibres
BH2/1 4.4	BH2/1 4.4	- Non-Homogeneous Soil 161.0g	No Asbestos Detected Organic Fibres
BH2/1 5.5	BH2/1 5.5	- Non-Homogeneous Soil 258.5g	No Asbestos Detected Organic Fibres
BH2/2 2.1	BH2/2 2.1	- Non-Homogeneous Soil 131.5g	No Asbestos Detected Organic Fibres
BH2/2 3.9	BH2/2 3.9	- Non-Homogeneous Soil 189.0g	No Asbestos Detected Organic Fibres
BH2/2 4.7	BH2/2 4.7	- Non-Homogeneous Soil 97.6g	No Asbestos Detected Organic Fibres
BH2/1 3.5	BH2/1 3.5	- Non-Homogeneous Soil 119.0g	No Asbestos Detected Organic Fibres
BH2/2 7.8	BH2/2 7.8	- No Ashesto	
BH2/2 8.4	BH2/2 8.4	- No Asbestos Detected Non-Homogeneous Soil Organic Fibres	
BH1/2 5.6	BH1/2 5.6	- Non-Homogeneous Soil	No Asbestos Detected Organic Fibres

Issue Date: Jun 2017 | Version 10 Precise Consulting & Laboratory Limited Unit 1, 30 Greenpark Road, Penrose, Auckland 8023 P1710061439 - 3 of 7

Sample Analysis Results

Certificate Number: P1710061439 Report Date: 11 Oct 2017 Site Location: Parliament Building

Г

Sample ID	Client Sample ID	Sample Location/Description/Dimensions	Analysis Results
		91.0g	
BH2/2 2.8	BH2/2 2.8	- Non-Homogeneous Soil 96.5g	No Asbestos Detected Organic Fibres
BH2/2 5.3	BH2/2 5.3	- Non-Homogeneous Soil 108.0g	No Asbestos Detected Organic Fibres
TP20.5	TP20.5	- Non-Homogeneous Soil 111.0g	No Asbestos Detected Organic Fibres
TP6 0.25	TP6 0.25	- Non-Homogeneous Soil 110.5g	No Asbestos Detected Organic Fibres
TP7 0.45	TP7 0.45	- Non-Homogeneous Soil 117.5g	No Asbestos Detected Organic Fibres
TP8 0.2	TP8 0.2	- Non-Homogeneous Soil 125.5g	No Asbestos Detected Organic Fibres
BH1/1 1.75	BH1/1 1.75	- Non-Homogeneous Soil 91.0g	No Asbestos Detected Organic Fibres
BH1/1 6.9	BH1/1 6.9	- Non-Homogeneous Soil 107.0g	No Asbestos Detected Organic Fibres

P1710061439 - 4 of 7

Appendix 1: Soil Analysis Raw Data

PRECISE CONSULTING & LABORATORY

Certificate Number: P1710061439 Report Date: 11 Oct 2017 Site Location: Parliament Building

Sample ID	Client Sample ID	Total Sample Weight (g)	ACM Approximate Dimensions (g)*	Form	Trace Asbestos Detected**
TP1 0.4	TP1 0.4	186.0	-	-	N
TP3 0.4	TP3 0.4	374.0	-	-	N
TP4 0.15	TP4 0.15	246.0	-	-	N
TP5 0.5	TP5 0.5	205.5	-	-	N
TP9 0.3	TP9 0.3	103.5	-	-	N
TP10 0.2	TP10 0.2	138.5	-	-	N
BH1/1 3.5	BH1/1 3.5	158.5	-	-	N
BH1/1 4.4	BH1/1 4.4	165.5	-	-	N
BH1/1 5.0	BH1/1 5.0	198.0	-	-	N
BH1/1 5.7	BH1/1 5.7	231.5	-	-	N
BH1/2 2.1	BH1/2 2.1	204.5	-	-	N
BH1/2 3.1	BH1/2 3.1	113.5	-	-	N
BH1/2 3.6	BH1/2 3.6	140.0	-	-	N
BH1/2 4.7	BH1/2 4.7	135.0	-	-	N
BH2/1 2.4	BH2/1 2.4	260.5	-	-	N
BH2/1 3.3	BH2/1 3.3	183.0	-	-	N

Appendix 1: Soil Analysis Raw Data

PRECISE CONSULTING & LABORATORY

Certificate Number: P1710061439 Report Date: 11 Oct 2017 Site Location: Parliament Building

Sample ID	Client Sample ID	Total Sample Weight (g)	ACM Approximate Dimensions (g)*	Form	Trace Asbestos Detected**
BH2/1 4.4	BH2/1 4.4	161.0	-	-	Ν
BH2/1 5.5	BH2/1 5.5	258.5	-	-	Ν
BH2/2 2.1	BH2/2 2.1	131.5	-	-	Ν
BH2/2 3.9	BH2/2 3.9	189.0	-	-	Ν
BH2/2 4.7	BH2/2 4.7	97.6	-	-	Ν
BH2/1 3.5	BH2/1 3.5	119.0	-	-	Ν
BH2/2 7.8	BH2/2 7.8	113.0	-	-	Ν
BH2/2 8.4	BH2/2 8.4	342.0	-	-	Ν
BH1/2 5.6	BH1/2 5.6	91.0	-	-	Ν
BH2/2 2.8	BH2/2 2.8	96.5	-	-	Ν
BH2/2 5.3	BH2/2 5.3	108.0	-	-	Ν
TP20.5	TP20.5	111.0	-	-	Ν
TP6 0.25	TP6 0.25	110.5	-	-	Ν
TP7 0.45	TP7 0.45	117.5	-	-	N
TP8 0.2	TP8 0.2	125.5	-	-	Ν
BH1/1 1.75	BH1/1 1.75	91.0	-	-	Ν

Appendix 1: Soil Analysis Raw Data

Certificate Number: P1710061439 Report Date: 11 Oct 2017 Site Location: Parliament Building

Sample ID	Client Sample ID	Total Sample Weight (g)	ACM Approximate Dimensions (g)*	Form	Trace Asbestos Detected**
BH1/1 6.9	BH1/1 6.9	107.0	-	-	Ν

* The reporting limit for this standard is 0.1g/kg

** Trace asbestos present is indicative that freely liberated respirable fibres are present and dust control measures should be implemented or increased

LAB003 Chain of Custody

PRECISE 17	-2409	1								
		-	1	11	1	L	abo	atory Locatio	ons	
Christchurch Dunedin Unit 4/91 Byron Street 186 Macandrew Road Sydenham, Christchurch 8023 South Dunedin, 9012					drew	Roa) d	Wellington Level 2, 10 Hutt Road Petone,5012	Auckland 1/30 Greenpark Road Penrose	
E: admin@preciseconsulting.c	o.nz	_			_					P:0800 002 712
Company Name: Analytic	a Lab	orator	ies						Email: enviro.reception@	analytica.co.nz
Contact Person: Hariata 4	Ander	son							Phone/Mobile: (07)444 5	574
Office Address: Ruakura	Resea	rch Ce	entro	2, 1(0 Bis	ley	Roa	d, Hamilton		
Site Address: PARLy	ALC	T	-	Z		0	~	G		
Client Reference:		K	Test	E	ale			4091	Purchase Order Number:	
PCL Job Number:		F	14-1)	1	1		ernal	External	
			-			_				
Date Results Requested: ((Bulk I	D) 24h	r/U	rgen	t (<;	24hr)	-		Soil Anaylsis: Quant. (5 da Urgent Request (Tick) (ys) / Qual. (3days)
Relinquished By:	1	ARL	A				Date	"5/10/n	Received By:	Date:
	As	besto	s Te	sts	Requ	lired	1		Sample Det	ails
Client Sample ID / Sample #	Qualitative	Sami-Quantitative (Soil Only)	Quantitative (Soil Only)	Bulk	Soil	Tape	Lead in Paint	Sam	ple Location and Sample D	escription and Notes
TPI04	X									
TP20.05	X						_		Please send report to enviro.	reception@analytica.co.nz
TP3.04	×								with the second second second second	
TP40.15	×				-					
7P5 0.35	×		-		-			PLEASE	CANI NOUL	Line Andrew
TP7 0.45	X			+	-		-	prense	COMP. IOM	Inga) AURECON
TPS 0.2	V						_		group con.	
TP90.3	X									
FP 100.2	X							JC	100003422	
BI+1/1 1.75 .	X									
BH 1/1 3.5	X									
BH 1/1 4.4	X			-		-				
BH 1/1 5.0.	X									
BH 1/1 5-7	X		-	-	-					
BIF 1/1 6.9	X		-			-				
BH1/2 2.1 Lab Only:	T			+		-				
Report Checked by (Initia	ls):		1	1	TT		Date		Report sent by (Initials):	Date:
						_]	
Payment Received: Yes	s C		No)		Pay	ment Metho	od: COI CO	Account

LAB003 Chain of Custody

				Laboratory	Locations	/
Christchurch Unit 4/91 Byron Street Sydenham, Christchurch 8023	3			w Road	Wellington Level 2, 10 Hutt Road Petone,5012	Auckland 1/30 Greenpark Road Penrose
E: admin@preciseconsulting.c	co.nz	i				P:0800 002 712
Company Name: Analytic	a Laborator	ries			Email: enviro.reception@a	analytica.co.nz
Contact Person: Hariata /	Anderson				Phone/Mobile: (07)444 5	574
Office Address: Ruakura	Research Co	entre, 1	0 Bisley	Road, Ham	ilton	
Site Address: PAR	LAMEN	T	Bun	DING		
				17-20	1091 Purchase Order Number:	
PCL Job Number:				Internal	External	
Date Results Requested: ((Bulk ID) 24h	r / Urge r	nt (<24hi	7	Soil Anaylsis: Quant. (5 day Urgent Request (Tick)	e) / Qual. (3days)
Relinquished By:	ARLA			Date: 5/	10/17 Received By:	Date:
	Asbesto	s Tests	Require	d	Sample Deta	nils
Client Sample ID / Sample #	Qualitative Semi-Quantitative (Soll Only)	Quantitative (Soil Only) Bulk	Soil Tape	Lead in Paint	Sample Location and Sample De	scription and Notes
BH 1/2 31	X	+			_	
BH 1/2 3.6	X				Please send report to enviro.re	eception@analytica.co.nz
BH 112 4.7 AH 12 -1	X					
RH 2/1 2.4	X					
BH 11 3.3	X				PLEASE EMAIL NI	CK. KING a AL IPH
BH2/13 3.5	X				PLEASE EMAIL NI group com	Jengener
BH 2/1 4.4.	X				V	
BU12/2 2.1	X I	+			JOP0003422	
BU 2/2 7.8	<u>\$</u> .					
Bit 2/2 3.9	2					
311 2/2 47	X					
BH 2/2 53	X					
BH 2/2 7.8	X					
BH 2/2 814	×					
ab Oply:						
ab Only: Report Checked by (Initials	s):			Date:	Report sent by (Initials):	Date:
Payment Received: Yes		No \Box			Method: COI CO	Account

Analytica Laboratories Limited Ruakura Research Centre 10 Bisley Road Hamilton 3214, New Zealand Ph +64 (07) 974 4740 sales@analytica.co.nz www.analytica.co.nz

Certificate of Analysis

Aurecon New Zealand Ltd42-52 Willis StreetWellington6011Attention:Nick KingPhone:027 471 3030Email:nick.king@aurecongroup.com

Lab Reference: 17-25011 Submitted by: Date Received: 16/10/2017 Date Completed: 20/10/2017 Order Number: Reference: 248221

Sampling Site: Parliament

Water Aggregate Properties and Nutrients

	Client	BH1-2	
	Da	te Sampled	12/10/2017
Analyte	Unit	Reporting Limit	17-25011-2
Nitrate-N	g/m ³	0.05	<0.05
Nitrite-N	g/m ³	0.0025	<0.02
Ammonia-N	g/m ³	0.01	3.62
Dissolved Reactive Phosphorus	g/m ³	0.004	<0.04

Soluble Heavy Metals in Water

	Client Sample ID			BH1-2	BH2-1	BH2-2
	Da	te Sampled	12/10/2017	12/10/2017	12/10/2017	12/10/2017
Analyte	Unit	Reporting Limit	17-25011-1	17-25011-2	17-25011-3	17-25011-4
Arsenic	g/m ³	0.0005	0.0014	0.0028	0.0006	<0.0005
Beryllium	g/m ³	0.00001	<0.00001	<0.00001	<0.00001	<0.00001
Boron	g/m ³	0.005	0.148	0.185	0.068	0.069
Cadmium	g/m ³	0.00001	<0.00001	<0.00001	2 x 10 ⁻⁵	<0.00001
Chromium	g/m ³	0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Copper	g/m ³	0.0002	0.0016	0.0004	0.0033	0.0007
Lead	g/m ³	0.00005	<0.00005	<0.00005	<0.00005	<0.00005
Mercury	g/m ³	0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Nickel	g/m ³	0.0002	0.0024	0.0027	0.0029	0.0030
Zinc	g/m³	0.001	<0.001	0.0017	0.0049	0.0047

BTEX in Water

Clie	BH1-1	BH1-2	BH2-1	BH2-2	
Date Sampled		12/10/2017	12/10/2017	12/10/2017	12/10/2017
Analyte Un	Reporting Limit	17-25011-1	17-25011-2	17-25011-3	17-25011-4
Benzene g/m	3 0.001	<0.001	<0.001	<0.001	<0.001

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation, with the exception of tests marked *, which are not accredited.

BTEX in Water

	Client	Sample ID	BH1-1	BH1-2	BH2-1	BH2-2
	Da	te Sampled	12/10/2017	12/10/2017	12/10/2017	12/10/2017
Ethylbenzene	g/m³	0.001	<0.001	<0.001	<0.001	<0.001
Toluene	g/m ³	0.001	<0.001	<0.001	<0.001	<0.001
m,p-xylene	g/m ³	0.001	<0.001	<0.001	<0.001	<0.001
o-xylene	g/m ³	0.001	<0.001	<0.001	<0.001	<0.001
Benzene-d6 (Surrogate)	%	1	98.2	102.3	101.0	101.8

Total Petroleum Hydrocarbons - Water

	Client	Sample ID	BH1-1	BH1-2	BH2-1	BH2-2
Date Sampled		12/10/2017	12/10/2017	12/10/2017	12/10/2017	
Analyte	Unit	Reporting Limit	17-25011-1	17-25011-2	17-25011-3	17-25011-4
C7-C9	g/m ³	0.2	<0.2	<0.2	<0.2	<0.2
C10-C14	g/m ³	0.2	<0.2	<0.2	<0.2	<0.2
C15-C36	g/m ³	0.3	<0.3	<0.3	<0.3	<0.3
C7-C36 (Total)	g/m ³	0.5	<0.5	<0.5	<0.5	<0.5

Polycyclic Aromatic Hydrocarbons - Water

	Client	t Sample ID	BH1-1	BH1-2	BH2-1	BH2-2
	Da	te Sampled	12/10/2017	12/10/2017	12/10/2017	12/10/2017
Analyte	Unit	Reporting Limit	17-25011-1	17-25011-2	17-25011-3	17-25011-4
1-Methylnaphthalene	g/m ³	0.00006	<0.00006	<0.00006	<0.00006	0.00009
2-Methylnaphthalene	g/m ³	0.00006	<0.00006	<0.00006	<0.0006	0.00009
Acenaphthene	g/m ³	0.00002	<0.00002	<0.00002	<0.00002	0.00004
Acenaphthylene	g/m ³	0.00002	<0.00002	<0.00002	0.00004	0.00003
Anthracene	g/m ³	0.00002	<0.00002	<0.00002	<0.00002	<0.00002
Benz[a]anthracene	g/m ³	0.00003	<0.00003	<0.00003	<0.00003	<0.00003
Benzo[a]pyrene	g/m ³	0.00002	<0.00002	<0.00002	<0.00002	<0.00002
Benzo[b]&[j] fluoranthene	g/m ³	0.00002	<0.00002	<0.00002	<0.00002	<0.00002
Benzo[g,h,i]perylene	g/m ³	0.00002	<0.00002	<0.00002	<0.00002	<0.00002
Benzo[k]fluoranthene	g/m ³	0.00002	<0.00002	<0.00002	<0.00002	<0.00002
Chrysene	g/m ³	0.00002	<0.00002	<0.00002	<0.00002	<0.00002
Dibenz[a,h]anthracene	g/m ³	0.00002	<0.00002	<0.00002	<0.00002	<0.00002
Fluoranthene	g/m ³	0.00002	<0.00002	<0.00002	0.00005	<0.00002
Fluorene	g/m ³	0.00002	<0.00002	<0.00002	<0.00002	0.00015
Indeno[1,2,3-cd]pyrene	g/m ³	0.00003	<0.00003	<0.00003	<0.00003	<0.00003
Naphthalene	g/m ³	0.00006	<0.00006	0.00019	<0.00006	0.00024
Phenanthrene	g/m ³	0.00003	<0.00003	<0.00003	<0.00003	0.00005
Pyrene	g/m ³	0.00002	<0.00002	<0.00002	0.00004	0.00004
Benzo[a]pyrene TEQ (LOR)	g/m³	0.00002	0.00005	0.00005	0.00005	0.00005
Benzo[a]pyrene TEQ (Zero)	g/m³	0.00002	<0.00002	<0.00002	<0.00002	<0.00002
Anthracene-d10 (Surrogate)	%	1	93.3	97.1	96.9	78.2

Method Summary

Nitrate as N (High) Analysis by Ion exchange chromatography following sample filtration. APHA 4110B. (22nd edition).
 Nitrite as N Samples analysed colourimetrically following a filtration step. APHA 4500-NO₂ B. (22nd edition) - Modified.
 Ammonia as N Samples analysed colourimetrically following a filtration step. APHA 4500-NH₃ F. (22nd edition) - Modified.

This test report shall not be reproduced except in full, without the written permission of Analytica Laboratories

Method Summary

mounda oannary	
Dis. Reactive Phosphorus	Samples analysed colourimetrically following a filtration step. APHA 4500-P H. (22 nd edition) - Modified.
Soluble Trace Elements	Samples were analysed as received by the laboratory using ICP-MS following a 0.45µm membrane filtration (except when field filtered). US EPA method 200.8.
BTEX in Water	Solvent extraction, followed by Headspace GC-MS analysis. US EPA method 5021A.
TPH in Water	Solvent extraction, silica cleanup, followed by GC-FID analysis (C7-C36). MFE Petroleum Industry Guidelines.
PAH in Water	Liquid-liquid extraction with hexane, florisil cleanup with analysis by GC-MS. Benzo[a]pyrene TEQ (LOR) : The most conservative TEQ estimate, where a result is reported as less than the limit of reporting (LOR) the LOR value is used to calculate the TEQ for that PAH. Benzo[a]pyrene TEQ (Zero) : The least conservative TEQ estimate, PAHs reported as less than the limit of reporting (LOR) are not included in the TEQ calculation. Benzo[a]pyrene toxic equivalence (TEQ) is calculated according to 'Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health'. Ministry for the Enivronment. 2011.

Report Comments

Samples were received by Analytica Laboratories in acceptable condition unless otherwise noted on this report.

The validated Reporting limits listed are elevated for DRP and Nitrite as sample matrix required a further dilution prior to analysis.

J.J. ler Terry Cooney, Ph.D.

Signatory

Sharelle Frank, B.Sc. (Tech) Technologist

Hao Wang, M.Sc.(Hons) Technologist

Tom Featonby, (M.Sc.) Technologist

Analysis Report

Analytica

10 Bisley Road Ruakura Research Centre Hamilton

Attention: Rachael Casey

Report Number: 5521 Date Issued: 18/10/2017

2017007524 17-25011 BH 1-2 12/10	/2017		
Parameter Name	S Result	Units	Accreditation Status
E.Coli Enumerated	1	MPN/100mL	IANZ
Total Coliforms Enumerated	1720	MPN/100mL	IANZ

Test Methodology

Test	Method	Detection Limit
E.coli Enumerated	APHA Standard Methods 22nd ed. 9223 B	1 MPN/100mL
Total Coliforms Enumerated	APHA Standard Methods 22nd ed. 9223 B	1 MPN/100mL

These samples were received outside of the recommended preservation and storage guidelines of APHA Standard Methods 22nd ed. 9060B. Sampling, transport, storage and testing of the sample should not exceed 24 hours.

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

S Pa shi

Shahnaz Nazli Key Technical Personnel

The tests reported herein have been performed in accordance with the laboratory's scope of accreditation, with the exception of tests marked "not IANZ" which are outside the scope of this laboratory's accreditation. This report may not be reproduced, except in full, without written consent of the signatory.

Report Number: 5521

Shared Services Laboratory Pukete Rd, RD8, Hamilton Ph 07-985-5870

aurecon

Bringing ideas to life

Document prepared by

Aurecon New Zealand Limited

Spark Central Level 8, 42-52 Willis Street Wellington 6011 PO Box 1591 Wellington 6140 New Zealand

T +64 4 472 9589
 F +64 4 472 9922
 E wellington@aurecongroup.com
 W aurecongroup.com

Aurecon offices are located in: Angola, Australia, Botswana, China, Ghana, Hong Kong, Indonesia, Kenya, Lesotho, Macau, Mozambique, Namibia, New Zealand, Nigeria, Philippines, Qatar, Singapore, South Africa, Swaziland, Tanzania, Thailand, Uganda, United Arab Emirates, Vietnam.